
AUSTIN

Mission: Deliver clean, affordable, reliable energy and excellent customer service.

Follow-Up to Electric Rate Proposal Modifications **City Council Work Session #6** April 19, 2012

Revenue Requirement – Production Function

YOUR ELECTRIC RATES

Classification of Production Cost

- **Energy-related**
- Fuel

AUSTIN

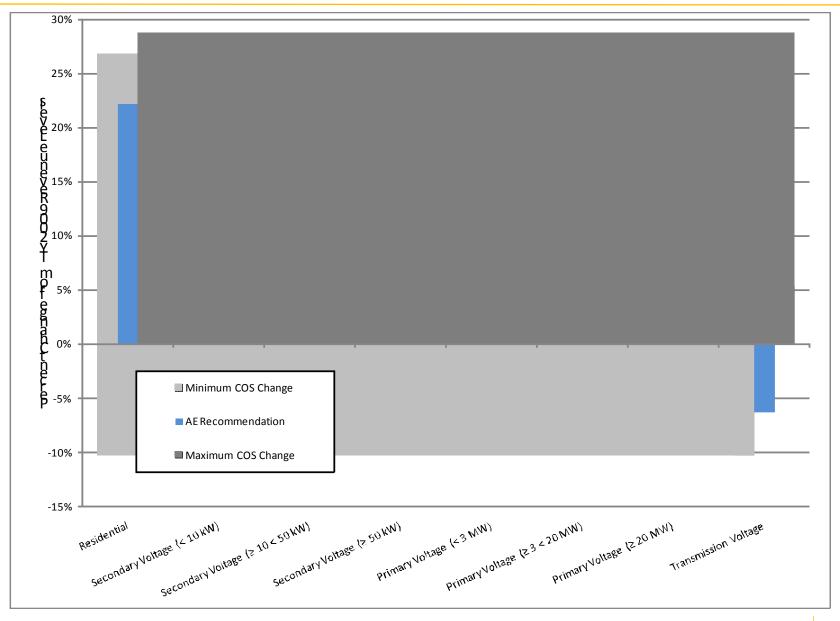
Demand-related

- Operating & Maintenance (O&M)
- Purchased Power
- Debt Service
- Capital

Production Demand Allocation Methods

YOUR ELECTRIC RATES

• Demand Responsibility


- <u>4 Coincident Peak (4 CP)</u>
 - Recognizes peak capacity is primary cost driver of plant investment
 - Allocated based on class contribution to system 4CP
- Energy Weighting
 - Average & Excess Demand (AED)
 - Assumes generation portfolio is designed to serve peak & energy
 - Allocates plant investment costs based on a combination of demand and energy measures
- Time-Differentiated
 - Baseload Intermediate Peak (BIP)
 - Assumes hourly dispatch of generation by type and design
 - Allocates plant investment costs based on customer class loads in assigned baseload, intermediate and peak periods

Production Allocation Methods

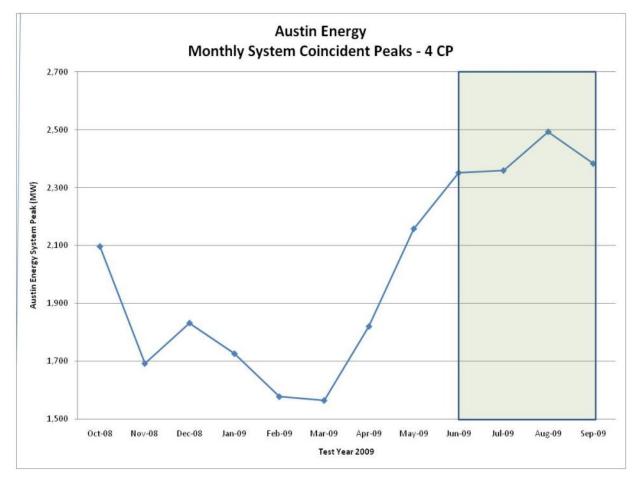
Customer Class	Average & Excess Demand (AED) <i>Average Monthly Bill</i>		4 Coincident Peak (4CP) <i>Average Monthly Bill</i>		Baseload Intermediate Peaking (BIP) Average Monthly Bill		AE Recommendation: AED within Goal <i>Average Monthly Bill</i>		Goal +/- 5%	/- AED within Goal less BIP <i>Increase</i> <i>(Decrease) in</i> <i>Average Monthly</i> <i>Bill</i>	
Residential	\$	108	\$	107	\$	102	\$	103	95%	\$	1
Secondary <10kW	\$	122	\$	123	\$	122	\$	116	95%	\$	(5)
Secondary 10 to <50kW	\$	776	\$	787	\$	765	\$	809	104%	\$	44
Secondary ≥50kW	\$	9,357	\$	9,495	\$	9,578	\$	9,754	104%	\$	175
Primary <3 MW	\$	24,730	\$	24,960	\$	26,505	\$	25,781	104%	\$	(723)
Primary 3 to <20 MW	\$	224,885	\$	223,797	\$	250,761	\$	234,467	104%	\$	(16,294)
Primary ≥20	\$	1,317,497	\$	1,320,036	\$	1,504,173	\$	1,373,559	104%	\$	(130,614)
Transmission	\$	298,761	\$	302,100	\$	350,831	\$	311,465	104%	\$	(39,367)

YOUR ELECTRIC RATES

Comparison of Methodologies

	Peak Demand (4CP)	Baseload, Intermediate, Peaking (BIP)	Average and Excess Demand (AED)		
Allocation Perspective	Class Coincident Demand	Generation Supply	Efficiency		
Industry Acceptance	Common	Limited	Common		
Use in Texas	PUCT	Limited	PUCT		
Nodal Market Applicability	Less	More	Less		
Cost Shifting (Cost Causation)	On Peak	High Load Factor	Low Load Factor		
AE DSM/EE Goals	Aligns	Less Supportive	Aligns		

Austin Energy Recommends AED

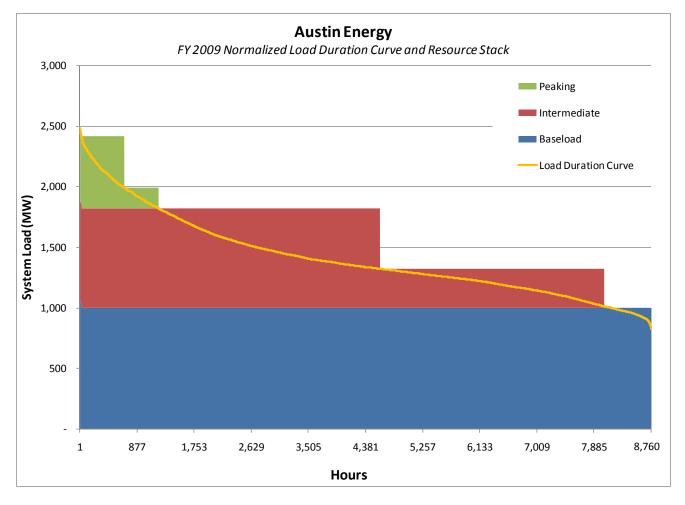

YOUR ELECTRIC RATES

- The AED method recognizes that customers benefit from both demand and energy produced from generation assets
- AED incorporates the class non-coincident peak (NCP), recognizing class load factors
- AED provides an incentive for customers to lower demand usage (improve load factor), which aligns with AE's Strategic Goals
- The AED method is widely used: Variations of this method are recognized and have been accepted by the Texas PUC

Four Coincident Peak (4CP) Method

Rationale: Generation capacity is required to meet peak system demand

AUSTIN



Process: Costs are allocated to customer classes based on the class contribution to the system peak in the 4 summer months (June – September)

Baseload Intermediate Peak (BIP) Method

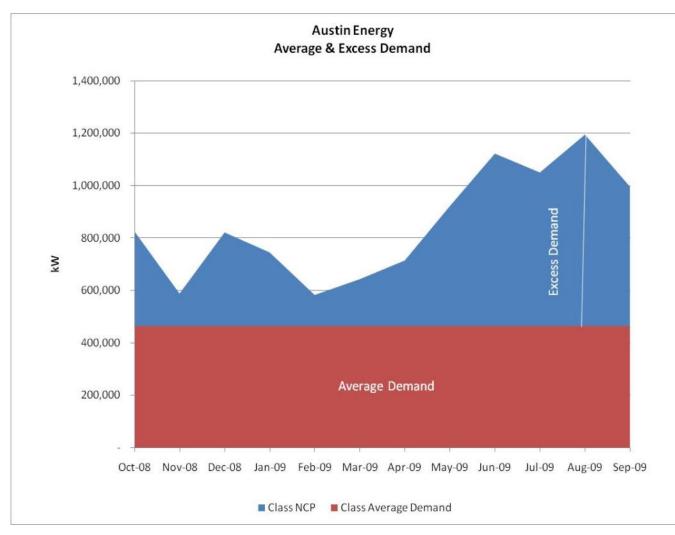
Rationale: Based on the underlying design and use of each type of generation by each customer class.

YOUR ELECTRIC RATES

Process: Costs are subfunctionalized into baseload, intermediate and peaking generation.

<u>Baseload</u> is allocated to customer classes based on energy.

Intermediate generation is allocated to customer classes based on 12 Coincident Peaks (CP)


<u>Peak</u> generation is allocated to customer classes based on 4 CP.

Average & Excess Demand (AED) Method

Rationale: Generation provides value during peak and non peak periods.

YOUR ELECTRIC RATES

AUSTIN

Process: Costs are allocated to customer classes based on the mix of class Average Demand and Excess Demand.

<u>Average Demand</u> is equivalent to Energy.

Excess Demand is allocated on Non-Coincident Peak.

Questions

