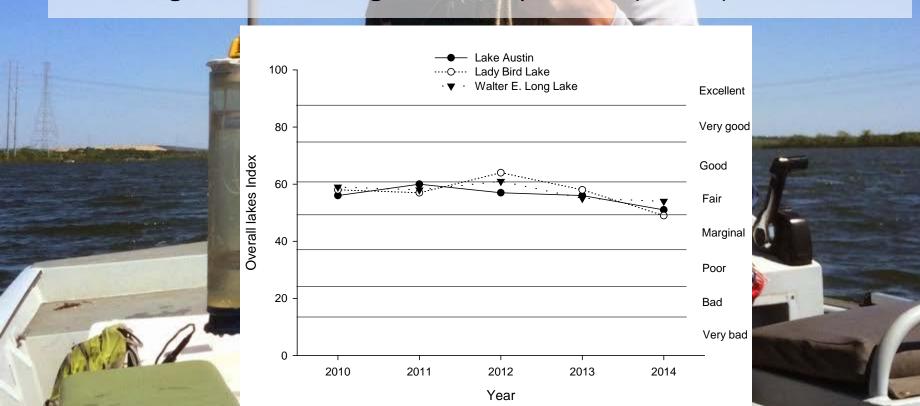
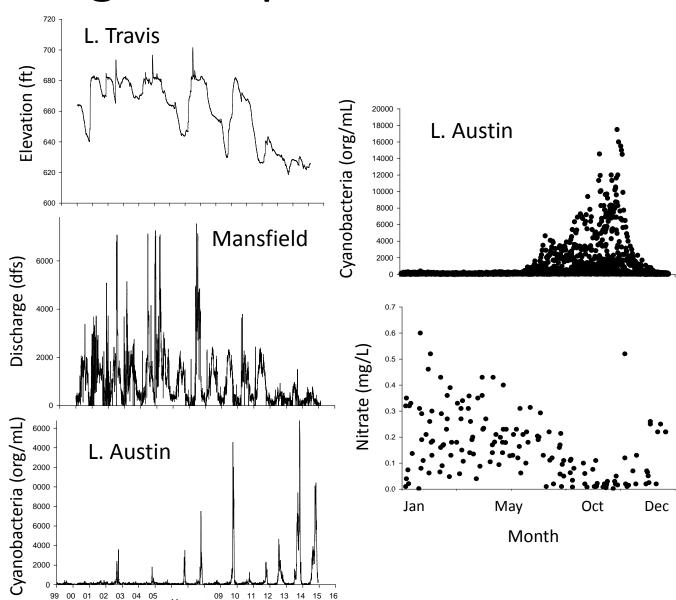


Watershed Protection Department
Water Resource Evaluation
Surface Water Evaluation Team


Reservoir Concerns

- Water quality
 - Drinking water, aesthetics, ecological integrity
- Algal blooms
 - Cyanobacteria, filamentous algae, taste and odor problems
- Non-native species
 - Hydrilla, zebra mussels, sterile grass carp
- Recreational uses
 - Fishing, boating, swimming
- Drought/Flood A significant influence on all of the above and the most difficult to predict


It is not just Austin

- Increased pressure and demands on our water resources are a global phenomena
 - Top concerns identified by the US EPA were lakeshore habitat condition and development; nutrient management; natural vegetation
 - Precipitation uncertainty, impacts on water availability and quality increasingly recognized and considered (e.g., 2012 Australian government Initiative Report)
- As a municipality, Austin is proactive in terms of their management, monitoring, research, remediation, and restoration efforts

- Austin Lakes Index (ALI) (<u>www.austintexas.gov/lakesindex</u>)
 - Water chemistry, Chl a, and phytoplankton community
 - Invertebrates, sediments, habitat characteristics
 - Vegetation coverage and composition (TPWD)

 Data mining and analyses are assessing algal bloom timing, magnitude, drivers

 Screening for toxins associated with algal

blooms of L. Austin

We have 5 potential toxin producing species)

 EPA has recently established Microcystin conc. criteria for drinking waters Table 1. Potentially toxic cyanobacteria present at AVM sites.

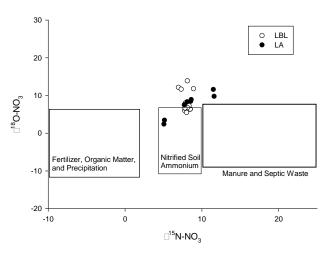
Cyanobacterial genus/species

Anabaena sp. Aphanizomenon sp. Potential toxins produced by these species

Anatoxins, Microcystins, Saxitoxins, LPS's Anatoxins, Saxitoxins, Cylindrospermopsins, LPS's

Lyngbya wollei Nostoc sp. Phormidium sp.

Aphysiatoxins, Lyngbiatoxin-a, LPS's Microcystins, LPS's uncharacterized toxin


TABLE 8.1. CYANOBACTERIAL TOXINS AND THEIR ACUTE TOXICITY

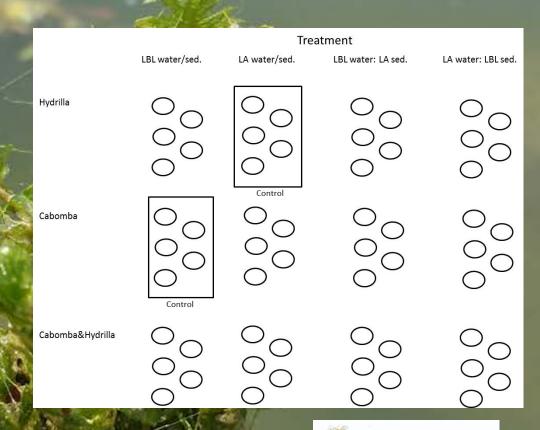
Cyanotoxins	LD ₅₀ (i.p. mouse) ^b of pure toxin (μg/kg)	Taxa known to produce the toxin(s)	Mechanism of toxicity
Protein phosphatase blocke	rs (cyclic peptides with the		
Microcystins in general	45->1000	Microcystis, Planktothrix,	all block protein
(~60 known congeners)		Oscillatoria, Nostoc	phosphatases by covalen
Microcystin-LR	60 (25-125)	Anabaena, Anabaenopsis	binding and cause
Microcystin-YR	70	Hapalosiphon	haemorrhaging of the
Microcystin-RR	300-600		liver; cumulative damage
Nodularin	30-50	Nodularia spumigena	may occur
Neurotoxins			
Anatoxin-a (alkaloid)	250	Anabaena, Oscillatoria,	blocks post-synaptic
		Aphanizomenon,	depolarization
		Cylindrospermum	
Anatoxin-a(s) (unique	40	known only from two	blocks
organophosphate)		species of Anabaena	acetylcholinesterase
Saxitoxins (carbamate	10-30	Aphanizomenon,	block sodium channels
alkaloids)		Anabaena, Lyngbya,	
		Cylindrospermopsis	
		raciborskii	
Cytotoxin			
Cylindrospermopsin	2100 in 1 day	Cylindrospermopsis	blocks protein synthesis;
(alkaloid)	200 in 5-6	raciborskii	substantial cumulative
	days		toxicity

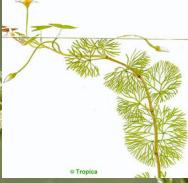
a derived from Turner et al., 1990; Kuiper-Goodman et al., 1999; Sivonen & Jones, 1999.

b LD₅₀ = lethal dose₅₀ (the dose of a chemical that will, on average, kill 50% of a group of experimental animals); i.o. = intraperitoneal.

- Stable Isotope food web study of L. Austin and Lady Bird
- Utilizing stable carbon, nitrogen, and oxygen isotopes
- Water quality and biological linkage:
 - As shorelines and watersheds are developed, is the loss of watershed inputs (e.g., leaves) impacting the biological structure of the reservoirs?
 - Development also means more roads and sanitation (e.g., septic); are those anthropogenic inputs (e.g., human-derived nitrate) entering the food web?
- Carbon relates to energy fueling production of the reservoirs
 - Is the carbon primarily derived internally (phytoplankton, aquatic vegetation) or externally (leaf litter inputs)?
- Nitrogen and oxygen provide information on source of this critical nutrient
 - Is the nitrogen in the water and lower trophic levels or an atmospheric, microbial, and/or human origin?

Nitrate sources


Plankton sampling



Direct observation of resources consumed

- Deciphering the lack of Hydrilla in Lady Bird Lake
- Hydrilla has had fifteen years to colonize LBL, yet has only been found in L. Austin and below Longhorn Dam
- Is it related to water and/or sediment composition and chemistry?

- Zebra mussels: Highly invasive organism making its way into Texas reservoirs
- Zebra mussels impact water in many ways:
 - Negatively impact native shellfish
 - Render beaches unusable
 - Clog water intake pipes
 - Increase water clarity
 - Stimulate massive benthic periphyton blooms – after algal die-off may find avian botulism
- Cross-training with LCRA on monitoring protocols; developing educational and outreach materials to supplement LCRA and TPWD efforts

Summary

- With an increasing population and climate uncertainty, it is essential to understand the drivers of aquatic system condition (data is the key to decision making)
- In Austin we can be innovative in our resource management; many other regions are experiencing similar issues that can help inform our decisions
- Our reservoirs are not just about clean drinking water; must study, manage, and protect to ensure "Sustainable and Healthy Communities" (Imagine Austin; new EPA research Program)

Contact Information

