

Austin Integrated Water Resource Planning Community Task Force

Packet Index

January 22, 2018

<u>Item</u>	<u>Page</u>
Agenda	2
Minutes	5
Presentation	7

Austin Integrated Water Resource Planning Community Task Force January 22, 2018 – 6:00 p.m. Waller Creek Center, Room 104 625 East 10th Street Austin, Texas 78701

For more information go to: Austin Integrated Water Resource Planning Community Task Force

AGENDA

Voting Members:

Sharlene Leurig - Chair Jennifer Walker – Vice Chair Todd Bartee Clint Dawson Marianne Dwight Diane Kennedy Perry Lorenz Bill Moriarty Sarah Richards Lauren Ross Robert Mace

Ex Officio Non-Voting Members: Austin Water: Greg Meszaros Austin Energy: Kathleen Garrett Austin Resource Recovery: Sam Angoori Neighborhood Housing and Community Development: Rebecca Giello Office of Innovation: Kerry O'Connor Office of Sustainability: Lucia Athens Parks and Recreation: Sara Hensley Watershed Protection: Mike Personett

1. CALL TO ORDER – January 22, 2018, 6:00 p.m.

2. CITIZEN COMMUNICATION

The first 10 speakers signed up prior to the meeting being called to order will each be allowed a threeminute allotment to address their concerns regarding items not posted on the agenda.

3. APPROVAL OF MEETING MINUTES

a. Approval of the meeting minutes from the December 5, 2017 Task Force meeting (5 minutes)

Austin Integrated Water Resource Planning Community Task Force Meeting January 22, 2018

4. STAFF BRIEFINGS, PRESENTATIONS, AND OR REPORTS

a. Presentation on Draft Hybrid Portfolio Composition- City Staff (20 minutes)i. Task Force Discussion and Input (approximately 1.5 hours)

5. SUBCOMMITTEE REPORTS

6. VOTING ITEMS FROM TASK FORCE

a. Discuss and consider approval of proposed meeting schedule for March 2018 (10 minutes)

7. FUTURE AGENDA ITEMS

8. ADJOURN

Note: Agenda item sequence and time durations noted above are subject to change.

The City of Austin is committed to compliance with the American with Disabilities Act. Reasonable modifications and equal access to communications will be provided upon request. Meeting locations are planned with wheelchair access. If requiring Sign Language Interpreters or alternative formats, please give notice at least 2 days (48 hours) before the meeting date. Please call Austin Integrated Water Resource Planning Community Task Force, at 512-972-0194, for additional information; TTY users route through Relay Texas at 711.

For more information on the Austin Integrated Water Resource Planning Community Task Force, please contact Marisa Flores Gonzalez at 512-972-0194.

MINUTES

The Austin Integrated Water Resource Planning Community Task Force convened in a Regular Meeting on December 05, 2017 at Waller Creek Center, Conference Rm 104, 625 E 10th Street, in Austin, Texas.

Members in Attendance:

Sharlene Leurig - Chair Jennifer Walker – Vice Chair William Moriarty Diane Kennedy Robert Mace Sarah Richards Lauren Ross Clint Dawson Todd Bartee Perry Lorenz

Ex-Officio Members in Attendance:

Lucia Athens, Chris Herrington

Staff in Attendance:

Greg Meszaros, Kevin Critendon, Daryl Slusher, Teresa Lutes, Marisa Flores Gonzalez, Joe Smith, Mark Jordan, Prachi Patel, Helen Gerlach, Gabriella Ybarra, Jeff Fox, Drema Gross, Geneva Guerrero,

Additional Attendees:

Dan Rodrigo, Tina Petersen, Richard Hoffpauir, Jerry Roane, Brent Lyle, John Burke, Stefan Schuster, Ron Anderson

1. CALL TO ORDER

Sharlene Leurig, Chair, called the meeting to order at 4:13 p.m.

2. CITIZEN COMMUNICATION: GENERAL None

3. APPROVAL OF MEETING MINUTES

The meeting minutes from the November 07, 2017 Austin Integrated Water Resource Planning Community Task Force regular meeting were approved on Member Kennedy's motion and Member Lorenz's second on an 9-0-1-2 vote with Member Bartee abstaining and Member Walker and Member Dwight absent.

4. STAFF BRIEFINGS, PRESENTATIONS, AND/OR REPORTS

- a. Presentation on Draft Initial Portfolio Scoring was provided by Dan Rodrigo, CDM Smith. This presentation was followed by Task Force discussion and input, followed by questions and answers.
- 5. SUBCOMMITTEE REPORTS None

6. VOTING ITEMS FROM TASK FORCE Proposed Task Force Meeting Dates Through Plan Development

7. FUTURE AGENDA ITEMS None

Chair Leurig adjourned the meeting at 7:16 pm.

PRESENTATION

WATER FORWARD INTEGRATED WATER RESOURCE PLAN

Water Forward Task Force Meeting January 22, 2018

Agenda

Presentation of Draft Hybrid Portfolio Composition

Task Force Questions, Discussion, and Input

- Discuss and consider approval of proposed meeting schedule for March 2018
- Next Steps

Draft Hybrid Portfolio Composition

Meeting Goals

- Presentation on first iteration of hybrid portfolio compositions (20 min)
 - $\circ\,$ Please limit questions to clarifying questions
- Task Force Discussion (1.5 hours)
 - $\circ\,$ Input on draft hybrid composition
 - Consensus on reliability goals for hybrids
 - $\circ\,$ Buy-in on approach to evaluating risk
- Parking lot for other/future items

Planning For Change and Uncertainties

Key Points on Water Forward's Adaptive Management Plan

- This process is about incremental changes we can make to get closer to our desired future
- Out of the gate will focus on near term strategies while keeping an eye on longer term strategies
- The plan is anticipated to be updated on a five year cycle

First Iteration Hybrid #1 Composition – Conservation Based

Conservati	on Options			
D1	AMI			
D2	Water Loss Control			
D3	CII Ordinances			
D4	Benchmarking			
D5	Landscape Ordinance			
D6	Landscape Incentive			
D7	Irrigation Incentive			
D8	Lot Scale Stormwater Harvesting			
D9	Lot Scale Rainwater Harvesting			
D10	Gray Water Harvesting			
D11	Building Scale Wastewater Reuse			
D12	AC Condensate Reuse			
S10	Sewer Mining			
S11	Community Stormwater			
Reclaimed Water Options				
62	Direct Non-Potable Reuse (Purple Pipe			
33	System Expansion)			
S 9	Distributed WW Reuse			
Potable Su	pply Options			
S1	Aquifer Storage and Recovery			
S 2	Brackish Groundwater Desal			
S 5	Indirect Potable Reuse			
S 7	Off Channel Reservoir			

Austin

	Options Not Included
S 4	Direct Potable Reuse
S 6	LCRA Additional Supply
	Imported Option – includes two variations:
S 8	Seawater Desalination and Conventional
	Groundwater
S1	Community-Scale Rainwater Harvesting

First Iteration Hybrid #2 Composition– Local Control or Low Cost Based

Conservation	Conservation Options					
D1	AMI					
D2	Water Loss Control					
D3	CII Ordinances					
D4	Benchmarking					
D5	Landscape Ordinance					
D9	Lot Scale Rainwater Harvesting					
D10	Gray Water Harvesting					
D12	AC Condensate Reuse					
S10	Sewer Mining					
S11	Community Stormwater					
S12	Community Rainwater					
Reclaimed	Reclaimed Water Options					
60	Direct Non-Potable Reuse (Purple Pipe System					
53	Expansion)					
S 9	Distributed WW Reuse					
Potable Sup	oply Options					
S1	Aquifer Storage and Recovery					
S 2	Brackish Groundwater Desal					
S5	Indirect Potable Reuse					
S 7	Off Channel Reservoir					

	Options Not Included
D6	Landscape Incentive
D7	Irrigation Incentive
D8	Lot Scale Stormwater Harvesting
D1 1	Building Scale Wastewater Reuse
S4	Direct Potable Reuse
S 6	LCRA Additional Supply
	Imported Option – includes two variations:
S 8	Seawater Desalination and Conventional
	Groundwater

Refined Risk Evaluation Approach

Risks that impact initial implementation

Risks that impact operations/reliability once project is implemented

		Institutional	Public/Developer	Scalability Issue	Geographic/Distribution	Permitting/Regulatory	Infrastructure	Supply/Savings	0&M	Siting/Land	Emerging	Total Risk
	Supply and Demand-Side Options	Challenge	Opposition	After Initial Const.	Limitations	Difficulty	Failure	Un-Certainty	Challenges	Acquistion	Technology/	Score
S8a	Imported Option Category - Seawater Desalination	1	0	1	0	1	1	0	1	1	1	7
S8b	Imported Option Category - Conventional Groundwater	1	1	0	0	1	1	1	1	1	0	7
S4	Direct Potable Reuse	1	1	0	0	1	0	0	1	1	1	6
D11	Building Scale Wastewater Reuse	0	1	0	1	1	0	0	1	0	1	5
S12	Community Rainwater Harvesting	1	1	0	1	0	0	1	1	0	0	5
S2	Brackish Groundwater Desalination	1	0	0	0	1	0	0	1	1	0	4
S5	Indirect Potable Reuse	0	1	0	0	1	0	0	0	1	1	4
S11	Community Stormwater Harvesting	1	0	0	1	0	0	1	1	0	0	4
S10	Wastewater Scalping (Sewer Mining)	0	0	0	1	1	0	0	1	0	1	4
D4	Development-Focused Water Use Benchmarking/Budgeting	1	0	0	0	0	0	1	0	0	1	3
D8	Stormwater Harvesting (Lot)	0	1	0	0	0	0	1	1	0	0	3
D9	Rainwater Harvesting (Lot)	0	1	0	0	0	0	1	1	0	0	3
D10	Graywater Harvesting (Lot)	0	1	0	1	0	0	0	1	0	0	3
S1	Aquifer Storage and Recovery	0	0	0	0	0	0	0	1	1	1	3
S6	Additional Supply from LCRA	1	0	1	0	0	0	1	0	0	0	3
S7	Off-Channel Reservoir w/ Lake Evaporation Suppression	0	0	1	0	1	0	0	0	1	0	3
S9	Distributed Wastewater Reuse	0	0	0	1	1	0	0	1	0	0	3
D1	Advanced Metering Infrastructure	0	0	0	0	0	0	0	1	0	1	2
D2	Water Loss Control Utility Side	0	0	0	0	0	0	0	1	0	1	2
D5	Landscape Transformation Ordinance	0	1	0	0	0	0	1	0	0	0	2
S3	Direct Non-potable Reuse (including deluxe option)	0	1	0	1	0	0	0	0	0	0	2
D6	Landscape Transformation Incentives	0	0	0	0	0	0	1	0	0	0	1
D7	Irrigation Efficiency Incentives	0	0	0	0	0	0	1	0	0	0	1
D12	AC Condensate Reuse	0	0	0	0	0	0	0	1	0	0	1
D3	CII Ordinance for Cooling Towers and Steam Boilers	0	0	0	0	0	0	0	0	0	0	0

Changes to Objectives/Sub-Objectives

Austin

- Water Supply Benefits Make this objective more focused on reliability benefits and show more distinction between portfolios
 - Only has two sub-objectives: <u>Vulnerability</u> (what percent of demand are the type shortages during the worst 12-months of drought) and <u>Reliability</u> (how many months in period of simulation that have zero shortages)
- Implementation Benefits Make this objective be solely focused on issues of risk and local control
 - Only has two sub-objectives: <u>Risk</u> (a new sub-objective that measures major aspects of risk/uncertainties) and <u>Local Control</u> (now measured by assessing both AW's control over operations of resource and whether resource resides within the local area)

Water Supply Benefits Objective Draft Changes

Original Objective / Sub-Objectives

Primary Objective	Objective Weight	Sub-Objective	Performance Measure	Sub- Objective Weight
Water Supply Benefits		Maximize Water Reliability	Percent of time a shortage occurs and the cumulative shortage for a design drought based on WAM modeling results	20%
	35%	Maximize Local Control	Proportion of total supply yield from locally controlled sources	7.5%
		Maximize Supply Diversification	# of supply/demand-side management sources (above minimum yield threshold)	7.5%

Revised Objective / Sub-Objectives

Primary Objective	Objective Weight	Sub-Objective	Performance Measure	Sub- Objective Weight
Water Supply	25%	Minimize Water Supply Vulnerability	Percent of shortage compared to demand during drought based on WAM modeling results	28%
Benefits	5570	Maximize Water Supply Reliability	Percent of time a shortage occurs based on WAM modeling results	7%

Implementation Benefits Objective Draft Changes

Original Objective / Sub-Objectives

Primary Objective	Objective Weight	Sub-Objective	Performance Measure	Sub- Objective Weight	
Implementation Impacts	12%	Minimize Implementation Challenges	Implementation Uncertainty Score (1-5), where 1 = high combined challenges and 5 = low combined challenges	4%	
		Maximize Scalability	Scalability Score (1-5), where 1 = small incremental sizing potential and 5 = high incremental sizing potential	4%	
		Minimize Technical Feasibility Challenges	Technical Feasibility (1-5), where 1 = high reliance on emerging or unproven technologies and 5 = low reliance on emerging or unproven technologies	4%	

Revised Objective / Sub-Objectives

Primary Objective	Objective Weight	Sub-Objective	Performance Measure	Sub- Objective Weight
Implementation Impacts	12%	Minimize Risk	Risk Score (1-5), where 1 = high combined risks and uncertainties and 5 = low combined risks and uncertainties	7%
	1270	Maximize Local Control	Measured by assessing both AW's control over operations of resource and whether resource resides within the local area	5%

Revised Portfolio Ranking

Discussion Goals

- Input on draft hybrid composition
 - What should we add? What should we get rid of?
- Consensus on reliability goals for hybrid portfolios
 - Goals for different planning horizons and hydrologic scenarios
- Buy-in on approach to evaluating risk

- Parking lot for items not on discussion list
- Focus on 2115 for this meeting, will discuss phasing in of options at a future meeting
- Will discuss implementation strategy at a future meeting

Backup Materials

Questions and Discussion

Proposed March 2018 Meeting Schedule

Proposed March 2018 Meeting Schedule

• March 20th Task Force meeting

Waller Creek Center, Room 104, 4:00 pm

Next Steps

Next Steps

- February 2018 Task Force Meeting
 - $\,\circ\,$ Presentation of draft Hybrid Portfolio scoring
- March 2018 Task Force Meeting
 - $\,\circ\,$ Presentation of draft plan recommendations
- March 2018 Public Workshop
 - $\circ~$ Public input on of draft plan recommendations

BACKUP MATERIALS

Draft Hybrid Composition:

Draft Hybrid #1 – start with Maximize Conservation and Environmental Stewardship Initial Portfolio (IP)

Base components:

- Core Colorado River Supply (LCRA Firm Water Supply Agreement)
- City of Austin Reclaimed Water Program (existing Purple Pipe System)
- City of Austin Drought Contingency Plan

2115 Time Horizon

Conserv	vation Options		
D1	AMI		9,371
D2	Water Loss Control		13,064
D3	CII Ordinances		1,063
D4	Benchmarking		25,228
D5	Landscape Ordinance		15,050
D6	Landscape Incentive		929
D7	Irrigation Incentive		394
D8	Lot Scale Stormwater Harvesting		2,275
D9	Lot Scale Rainwater Harvesting		9,251
D10	Gray Water Harvesting		12,667
D11	Building Scale Wastewater Reuse		7,875
D12	AC Condensate Reuse		5,150
S10	Sewer Mining		5,284
S11	Community Stormwater		504
		Total	108,103
Reclaim	ed Water Options		
62	Direct Non-Potable Reuse (Purple		44,000
33	Pipe System Expansion)		
S9	Distributed WW Reuse		30,049
		Total	74,049
Potable	Supply Options		
S1	Aquifer Storage and Recovery	Increase storage capacity for hybrid	60,000
S2	Brackish Groundwater Desal	Increase amount for hybrid (from 10k AF)	20,000
S5	Indirect Potable Reuse	Add for hybrid	20,000
S7	Off Channel Reservoir		25,857
		Total	125,857

Options Not Included

S4	Direct Potable Reuse
S6	LCRA Additional Supply
S8	Imported Option – includes two variations: Seawater Desalination and Conventional
	Groundwater
S12	Community-Scale Rainwater Harvesting

2115 Total of Conservation and Non-Potable Reuse Options: 182,154 AF

2115 Total of Estimated Savings with DCP Stages 3 in effect: 61,359 AF

2115 Key Demand and Other Reference Figure Summary Table:

2115 Condition	AF
Average Weather Baseline demand – Stationary Climate	467,392
Conservation Stage Demand Level with Conservation options 1-12 applied and S10	
and S11 plus addition of 6% demand multiplier factor for climate change effects –	380,846
Climate Change Adjusted Demand	
Potable system demand – DCP Conservation Stage - Above figure with non-potable	206 707
reuse options S3 and S9 subtracted - Climate Change Adjusted Demand	500,797
Potable system demand – Drought Conditions - Above figure with DCP Stage 3 in	24E 429
effect - Climate Change Adjusted Demand	243,438

Draft Hybrid Composition:

Draft Hybrid #2 – start with Maximize Local Control Initial Portfolio (IP)

Base components:

- Core Colorado River Supply (LCRA Firm Water Supply Agreement)
- City of Austin Reclaimed Water Program (existing Purple Pipe System)
- City of Austin Drought Contingency Plan

2115 Time Horizon

Conserv	vation Options		
D1	AMI		9,371
D2	Water Loss Control		13,064
D3	CII Ordinances		1,063
D4	Benchmarking		25,228
D5	Landscape Ordinance		15,050
D9	Lot Scale Rainwater Harvesting		4,819
D10	Gray Water Harvesting		4,508
D12	AC Condensate Reuse		5,150
S10	Sewer Mining		6,357
S11	Community Stormwater		874
S12	Community Rainwater		24
		Total	85,508
Reclaim	ed Water Options		
62	Direct Non-Potable Reuse (Purple		59 <i>,</i> 600
35	Pipe System Expansion)		
S9	Distributed WW Reuse		31,602
		Total	91,202
Potable	Supply Options		
S1	Aquifer Storage and Recovery	Increase storage capacity for hybrid	60,000
S2	Brackish Groundwater Desal	Increase amount for hybrid (from 10k AF)	20,000
S5	Indirect Potable Reuse	Add for hybrid	20,000
S7	Off Channel Reservoir		25,857
		Total	125.857

Options Not Included

DC	
D6	Landscape Incentive
D7	Irrigation Incentive
D8	Lot Scale Stormwater Harvesting
D11	Building Scale Wastewater Reuse
S4	Direct Potable Reuse
S6	LCRA Additional Supply
S8	Imported Option – includes two variations: Seawater Desalination and Conventional
	Groundwater

2115 Total of Conservation and Non-Potable Reuse Options: 176,710 AF

2115 Total of Estimated Savings with DCP Stages 3 in effect: 62,719 AF

2115 Key Demand and Other Reference Figure Summary Table:

2115 Condition	AF
Average Weather Baseline demand – Stationary Climate	467,392
Conservation Stage Demand Level with Conservation options 1-12 applied and S10	
and S11 plus addition of 6% demand multiplier factor for climate change effects –	404,798
Climate Change Adjusted Demand	
Potable system demand – DCP Conservation Stage - Above figure with non-potable	212 505
reuse options S3 and S9 subtracted - Climate Change Adjusted Demand	515,595
Potable system demand – Drought Conditions - Above figure with DCP Stage 3 in	250 976
effect - Climate Change Adjusted Demand	230,870

Water Forward: Integrated Water Resources Plan Objectives – Prior Version – used in prior Initial Portfolio scoring (December 2017)

Primary Objective	Objective Weight	Sub-Objective	Defining Question	Performance Measure	Sub- Objective Weight
Water Supply Benefits	Vater Supply35%Maximize WatBenefitsReliability		How does the portfolio perform in terms of how often is there a shortage and how large is the shortage under various hydrologic conditions, including climate change scenarios?	Percent of time a shortage occurs and the cumulative shortage for a design drought based on WAM modeling results	20%
		Maximize Local Control	To what extent does AW have control over the quantity and storage of water and operation of options (especially during drought periods) included in the portfolio?	Proportion of total supply yield from locally controlled sources	7.5%
		Maximize Supply Diversification	How many independent water supply and demand-side management options above a minimum yield threshold are included in the portfolio?	# of supply/demand-side management sources (above minimum yield threshold)	7.5%
Economic Impacts	20%	Maximize Cost- Effectiveness	What is the total capital (construction) and operations/maintenance costs of all projects/programs in the portfolio over the lifecycle, divided by the sum of all water yield produced by the portfolio?	Unit cost (\$/AF) expressed as a present value sum of all costs over the lifecycle, including utility and customer costs.	15%
		Maximize Advantageous External Funding	Does the portfolio have an opportunity for advantageous external funding from Federal, State, local, and private sources?	External Funding Score (1-5), where 1 = low potential and 5 = high potential	5%
Environmental Impacts	20%	Minimize Ecosystem Impacts	To what extent does the portfolio positively or negatively impact receiving water quality (e.g., streams, river, lakes), terrestrial and aquatic habitats throughout Austin, and net streamflow effects both upstream and downstream from Austin?	Ecosystem Impact Score (1-5), where 1 = high combined negative impacts and 5 = high combined positive impacts	8%
		Minimize Net Energy Use	What is the net energy requirement of the portfolio, considering energy generation?	Incremental net change in kWh	6%
		Maximize Water Use Efficiency	What is the reduction in potable water use from water conservation, reuse and rainwater capture for the portfolio?	Potable per capita water use (gallon/person/day)	6%
Social Impacts	13%	Maximize Multi-Benefit Infrastructure/Programs	To what extent does the portfolio provide secondary benefits such as enhanced community livability/beautification, increased water ethic, ecosystem services, or others?	Multiple Benefits Score (1-5), where 1 = low benefits and 5 = high benefits	5%
		Maximize Net Benefits to Local Economy	To what extent does the supply reliability and water investments of the portfolio protect and improve local economic vitality, including permanent job creation?	Local Economy Score (1-5), where 1 = high negative impact and 5 = high positive impact	4%
		Maximize Social Equity and Environmental Justice	To what extent does the portfolio support social equity and environmental justice, with emphasis on underserved communities? (see accompanying reference slide)	Social Equity and Environmental Justice Score (1-5), where 1 = significant support and 5 = minimal support	4%
Implementation Impacts	12%	Minimize Implementation Challenges	What implementation challenges will the portfolio face in terms of public acceptance, regulatory approval, and legal/institutional barriers?	Implementation Uncertainty Score (1-5), where 1 = high combined challenges and 5 = low combined challenges	4%
		Maximize Scalability	To what extent can the portfolio be incrementally sized over time in terms of supply capacity and demand management?	Scalability Score (1-5), where 1 = small incremental sizing potential and 5 = high incremental sizing potential	4%
		Minimize Technical Feasibility Challenges	To what extent does the portfolio rely on emerging and/or unproven technologies?	Technical Feasibility (1-5), where 1 = high reliance on emerging or unproven technologies and 5 = low reliance on emerging or unproven technologies	4%

Water Forward: Integrated Water Resources Plan Objectives – Draft Revised Version – used in revised Initial Portfolio scoring (January 2018)

Objective Primary Weight					Sub- Objective
Objective		Sub-Objective	Defining Question	Performance Measure	Weight
Water Supply Benefits35%Minimize Water Supply Vulnerability		Minimize Water Supply Vulnerability	How does the portfolio perform in terms of how large are shortages under various hydrologic conditions, including climate change scenarios?	Percent of shortage compared to demand during drought based on WAM modeling results	28%
Maximize Water Supply ReliabilityHow does the portfolio perform in terms of how often is there a shortage under various hydrologic conditions, including climatePer m m		Percent of time a shortage occurs based on WAM modeling results	7%		
Economic Impacts	20%	Maximize Cost- Effectiveness	What is the total capital (construction) and operations/maintenance costs of all projects/programs in the portfolio over the lifecycle, divided by the sum of all water yield produced by the portfolio?	Unit cost (\$/AF) expressed as a present value sum of all costs over the lifecycle, including utility and customer costs.	15%
		Maximize Advantageous External Funding	Does the portfolio have an opportunity for advantageous external funding from Federal, State, local, and private sources?	External Funding Score (1-5), where 1 = low potential and 5 = high potential	5%
Environmental 20% Impacts		Minimize Ecosystem Impacts	To what extent does the portfolio positively or negatively impact receiving water quality (e.g., streams, river, lakes), terrestrial and aquatic habitats throughout Austin, and net streamflow effects both upstream and downstream from Austin?	Ecosystem Impact Score (1-5), where 1 = high combined negative impacts and 5 = high combined positive impacts	8%
		Minimize Net Energy Use	What is the net energy requirement of the portfolio, considering energy generation?	Incremental net change in kWh	6%
		Maximize Water Use Efficiency	What is the reduction in potable water use from water conservation, reuse and rainwater capture for the portfolio?	Potable per capita water use (gallon/person/day)	6%
Social Impacts	13%	Maximize Multi-Benefit Infrastructure/Programs	To what extent does the portfolio provide secondary benefits such as enhanced community livability/beautification, increased water ethic, ecosystem services, or others?	Multiple Benefits Score (1-5), where 1 = low benefits and 5 = high benefits	5%
		Maximize Net Benefits to Local Economy	To what extent does the supply reliability and water investments of the portfolio protect and improve local economic vitality, including permanent job creation?	Local Economy Score (1-5), where 1 = high negative impact and 5 = high positive impact	4%
		Maximize Social Equity and Environmental Justice	To what extent does the portfolio support social equity and environmental justice, with emphasis on underserved communities? (see accompanying reference slide)	Social Equity and Environmental Justice Score (1-5), where 1 = significant support and 5 = minimal support	4%
Implementation Impacts	12%	Minimize Risk	What major implementation and operational risks and uncertainties will the portfolio face?	Risk Score (1-5), where 1 = high combined risks and uncertainties and 5 = low combined risks and uncertainties	7%
		Maximize Local Control	To what extent does AW have control over the quantity and storage of water and operation of options (especially during drought periods) included in the portfolio?	Measured by assessing both AW's control over operations of resource and whether resource resides within the local area	5%

Portfo	olio Makeup	Avg/Droug	2040 Target Yield	2070 Target Yield	2115 Target Yield
D1	AMI	Both	3,882	5,766	9,371
02	Water Loss Control	Both	9,326	10,918	13,064
03	CII Ordinances	Both	1,063	1,063	1,063
04	Benchmarking	Both	5,953	11,670	25,228
D5	Landscape Ordinance	Both	3,038	7,428	15,050
D6	Landscape Incentive	Both	321	633	929
07	Irrigation Incentive	Both	205	427	394
28	Lot Scale Stormwater Harvesting	Both	329	869	2,275
09	Lot Scale Rainwater Harvesting	Both	1,550	4,032	9,251
D10	Gray Water Harvesting	Both	2,126	5,617	12,667
D11	Building Scale Wastewater Reuse	Both	1,323	3,672	7,875
012	AC Condensate Reuse	Both	1,084	2,711	5,150
51	Aquifer Storage and Recovery	Drought	30,000	30,000	60,000
52	Brackish Groundwater Desal	Both	-	5,000	10,000
53	Direct Non-Potable Reuse	Both	12,000	24,000	44,000
54	Direct Potable Reuse	Drought	-	-	-
55	Indirect Potable Reuse	Drought	-	-	-
66	LCRA Additional Supply	Both	-	-	-
57	Off Channel Reservoir	Both	-	25,827	25,827
58	Imported Option	Both	-	-	-
59	Distributed WW Reuse	Both	3,154	14,467	30,049
510	Sewer Mining	Both	1,000	2,211	5,284
511	Community Stormwater	Both	158	236	504
512	Community Rainwater	Both	-	-	-

Scenario D

Extended Period

Worst 12 Months (Climate Change Adjusted)

Portfolio Makeup		Avg/Droug 2040 Target Yield		2070 Target Yield	2115 Target Yield
D1	AMI	Both	3,882	5,766	9,371
D2	Water Loss Control	Both	9,326	10,918	13,064
D3	CII Ordinances	Both	1,063	1,063	1,063
D4	Benchmarking	Both	5,953	11,670	25,228
D5	Landscape Ordinance	Both	3,038	7,428	15,050
D6	Landscape Incentive	Both	321	633	929
D7	Irrigation Incentive	Both	205	427	394
D8	Lot Scale Stormwater Harvesting	Both	-	-	-
D9	Lot Scale Rainwater Harvesting	Both	-	-	-
D10	Gray Water Harvesting	Both	-	-	-
D11	Building Scale Wastewater Reuse	Both	-	-	-
D12	AC Condensate Reuse	Both	1,084	2,711	5,150
S1	Aquifer Storage and Recovery	Drought	-	30,000	60,000
S2	Brackish Groundwater Desal	Both	-	-	-
S3	Direct Non-Potable Reuse	Both	8,000	16,000	40,000
S4	Direct Potable Reuse	Drought	-	-	-
S5	Indirect Potable Reuse	Drought	10,000	10,000	20,000
S6	LCRA Additional Supply	Both	-	-	-
S7	Off Channel Reservoir	Both	25,827	25,827	25,827
S8	Imported Option	Both	10,000	20,000	45,000
S9	Distributed WW Reuse	Both	1,055	8,025	16,989
S10	Sewer Mining	Both	-	-	-
S11	Community Stormwater	Both	-	-	-
S12	Community Rainwater	Both	_	-	-

Portf	olio Makeup	Avg/Droug	2040 Target Yield	2070 Target Yield	2115 Target Yield
D1	AMI	Both	3,882	5,766	9,371
02	Water Loss Control	Both	9,326	10,918	13,064
03	CII Ordinances	Both	1,063	1,063	1,063
D4	Benchmarking	Both	5,953	11,670	25,228
D5	Landscape Ordinance	Both	3,038	7,428	15,050
D6	Landscape Incentive	Both	-	-	-
70	Irrigation Incentive	Both	207	434	401
28	Lot Scale Stormwater Harvesting	Both	-	-	-
D 9	Lot Scale Rainwater Harvesting	Both	823	2,133	4,887
D10	Gray Water Harvesting	Both	-	-	-
D11	Building Scale Wastewater Reuse	Both	-	-	-
D12	AC Condensate Reuse	Both	1,084	2,711	5,150
51	Aquifer Storage and Recovery	Drought	30,000	30,000	60,000
52	Brackish Groundwater Desal	Both	-	-	-
53	Direct Non-Potable Reuse	Both	12,000	25,000	54,600
54	Direct Potable Reuse	Drought	-	-	-
55	Indirect Potable Reuse	Drought	-	10,000	20,000
56	LCRA Additional Supply	Both	-	-	30,000
57	Off Channel Reservoir	Both	-	25,827	25,827
58	Imported Option	Both	-	-	-
59	Distributed WW Reuse	Both	1,055	8,025	16,989
510	Sewer Mining	Both	-	-	-
511	Community Stormwater	Both	-	-	-
512	Community Rainwater	Both	-	-	-

Portfolio Makeup		Avg/Droug	2040 Target Yield	2070 Target Yield	2115 Target Yield
D1	AMI	Both	3,882	5,766	9,371
D2	Water Loss Control	Both	9,326	10,918	13,064
D3	CII Ordinances	Both	1,063	1,063	1,063
D4	Benchmarking	Both	5,953	11,670	25,228
D5	Landscape Ordinance	Both	3,038	7,428	15,050
D6	Landscape Incentive	Both	-	-	-
D7	Irrigation Incentive	Both	-	-	-
D8	Lot Scale Stormwater Harvesting	Both	-	-	-
D9	Lot Scale Rainwater Harvesting	Both	917	2,350	4,819
D10	Gray Water Harvesting	Both	709	1,900	4,508
D11	Building Scale Wastewater Reuse	Both	-	-	-
D12	AC Condensate Reuse	Both	1,084	2,711	5,150
S1	Aquifer Storage and Recovery	Drought	30,000	30,000	60,000
S2	Brackish Groundwater Desal	Both	-	-	-
S3	Direct Non-Potable Reuse	Both	12,000	25,000	59,600
S4	Direct Potable Reuse	Drought	-	-	-
S5	Indirect Potable Reuse	Drought	-	10,000	20,000
S6	LCRA Additional Supply	Both	-	-	-
S7	Off Channel Reservoir	Both	-	25,827	25,827
S8	Imported Option	Both	-	-	-
S9	Distributed WW Reuse	Both	3,391	15,144	31,602
S10	Sewer Mining	Both	1,255	2,673	6,357
S11	Community Stormwater	Both	268	440	874
S12	Community Rainwater	Both	16	17	24

Portf	olio Makeup	Avg/Droug	2040 Target Yield	2070 Target Yield	2115 Target Yield
D1	AMI	Both	3,882	5,766	9,371
D2	Water Loss Control	Both	9,326	10,918	13,064
D3	CII Ordinances	Both	1,063	1,063	1,063
D4	Benchmarking	Both	-	-	-
D5	Landscape Ordinance	Both	-	-	-
D6	Landscape Incentive	Both	-	-	-
D7	Irrigation Incentive	Both	-	-	-
D8	Lot Scale Stormwater Harvesting	Both	-	-	-
D9	Lot Scale Rainwater Harvesting	Both	-	-	-
D10	Gray Water Harvesting	Both	3,040	8,113	18,632
D11	Building Scale Wastewater Reuse	Both	2,570	7,145	16,021
D12	AC Condensate Reuse	Both	1,084	2,711	5,150
S1	Aquifer Storage and Recovery	Drought	-	-	-
S2	Brackish Groundwater Desal	Both	5,000	5,000	10,000
S 3	Direct Non-Potable Reuse	Both	12,000	25,000	54,600
S4	Direct Potable Reuse	Drought	20,000	20,000	20,000
S5	Indirect Potable Reuse	Drought	10,000	10,000	20,000
S6	LCRA Additional Supply	Both	-	-	-
S7	Off Channel Reservoir	Both	-	-	-
S8	Imported Option	Both	-	40,000	84,000
S9	Distributed WW Reuse	Both	3,154	14,467	30,049
S10	Sewer Mining	Both	1,417	3,012	7,168
S11	Community Stormwater	Both	-	-	-
S12	Community Rainwater	Both	-	-	-

Monthly Time Series Graphs - Year 2115 WAM Results - Initial Portfolios

Maximize Conservation Portfolio

Minimize Cost Portfolio

Maximize Local Control Portfolio

Maximize Water Supply Reliability Portfolio

Minimize Implementation Challenges Initial Portfolio: 2115 Scenario A (POR with no Climate change) 60000 2,500,000 50000 2,000,000 40000 Combined Storage (AF) 1,500,000 Volume (AF) 00000 1,000,000 20000 500,000 10000 0 0 Jul-10 Oct-10 Oct-11 Apr-13 Jul-13 Oct-13 Apr-14 Jan-16 Apr-16 Jul-16 Oct-16 Jul-08 Apr-09 00-Inf Oct-09 Jan-10 Apr-10 Jan-11 Apr-11 Jul-11 Jan-12 Apr-12 Jul-12 Oct-12 Jan-13 Jan-14 Jul-14 Oct-14 Jan-15 Jul-15 Oct-15 Jul-07 Oct-07 Jan-08 Apr-08 Oct-08 Jan-09 Apr-15 Potential Shortage due to Low Reservoirs 1, 2 COA Run of River LCRA Supply Shortage based on Type 1, 2, & 3 Needs Aquifer Storage and Recovery Off Channel Reservoir Brackish Groundwater Desal Direct Potable Reuse Imported Option Indirect Potable Reuse Direct Non-Potable Reuse (Cent. & Decent.) DCP Implementation ¹LCRA is engaged in water supply planning that may address shortage Conservation (inc. lot & community scale decent.) Combined Storage ²Includes a ssumption related to LCRA supply a vailability

Minimize Implementation Challenges Portfolio

