

Austin Integrated Water Resource Planning Community Task Force

Packet Index

March 20, 2018

<u>ltem</u>		<u>Page</u>
Agenda		2
Minutes		5
Presentation		7
Backup Materials		26
	Draft Outline of Plan Recommendations	27
	Draft Implementation Timeline and Adaptive Management Plan	32
	Draft Water Forward Plan Report Outline	33
	Assumptions for Estimated Savings by Option	36
	Net Diversion Metrics Summary - from WAM Results	49
	Regional Demand Table Used in WAM modeling	50

Austin Integrated Water Resource Planning Community Task Force March 20, 2018 – 4:00 p.m. Waller Creek Center, Room 104 625 East 10th Street Austin, Texas 78701

For more information go to: <u>Austin Integrated Water Resource Planning Community Task Force</u>

AGENDA

Voting Members:

Sharlene Leurig - Chair Jennifer Walker – Vice Chair Todd Bartee Clint Dawson Marianne Dwight Diane Kennedy Perry Lorenz Bill Moriarty Sarah Richards Lauren Ross Robert Mace

Ex Officio Non-Voting Members: Austin Water: Greg Meszaros Austin Energy: Kathleen Garrett Austin Resource Recovery: Sam Angoori Neighborhood Housing and Community Development: Rebecca Giello Office of Innovation: Kerry O'Connor Office of Sustainability: Lucia Athens Parks and Recreation: Sara Hensley Watershed Protection: Mike Personett

1. CALL TO ORDER – March 20, 2018, 4:00 p.m.

2. CITIZEN COMMUNICATION

The first 10 speakers signed up prior to the meeting being called to order will each be allowed a threeminute allotment to address their concerns regarding items not posted on the agenda.

3. APPROVAL OF MEETING MINUTES

a. Approval of the meeting minutes from the February 13, 2018 Task Force meeting (5 minutes)

Austin Integrated Water Resource Planning Community Task Force Meeting March 20, 2018

4. STAFF BRIEFINGS, PRESENTATIONS, AND OR REPORTS

a. Presentation on Draft Plan Recommendations - City Staff and Consultant Team (45 minutes)
 i. Task Force Discussion and Input (approximately 45 minutes)

5. SUBCOMMITTEE REPORTS

6. VOTING ITEMS FROM TASK FORCE

7. FUTURE AGENDA ITEMS

8. ADJOURN

Note: Agenda item sequence and time durations noted above are subject to change.

The City of Austin is committed to compliance with the American with Disabilities Act. Reasonable modifications and equal access to communications will be provided upon request. Meeting locations are planned with wheelchair access. If requiring Sign Language Interpreters or alternative formats, please give notice at least 2 days (48 hours) before the meeting date. Please call Austin Integrated Water Resource Planning Community Task Force, at 512-972-0194, for additional information; TTY users route through Relay Texas at 711.

For more information on the Austin Integrated Water Resource Planning Community Task Force, please contact Marisa Flores Gonzalez at 512-972-0194.

MINUTES

The Austin Integrated Water Resource Planning Community Task Force convened in a Regular Meeting on February 13, 2018 at Waller Creek Center, Conference Rm 104, 625 E 10th Street, in Austin, Texas.

Members in Attendance:

Sharlene Leurig - Chair Jennifer Walker – Vice Chair William Moriarty Diane Kennedy Robert Mace Todd Bartee Perry Lorenz Clint Dawson Lauren Ross Sarah Richards

Ex-Officio Members in Attendance:

Lucia Athens, Chris Herrington, Matt Russell

Staff in Attendance:

Kevin Critendon, Daryl Slusher, Teresa Lutes, Marisa Flores Gonzalez, Joe Smith, Mark Jordan, Prachi Patel, Helen Gerlach, Jeff Fox, Katherine Jashinski

Additional Attendees:

Richard Hoffpauir, John Burke, Ron Anderson, Stefan Schuster, David Briggs, James Dwyer

1. CALL TO ORDER

Sharlene Leurig, Chair, called the meeting to order at 4:15 p.m.

2. CITIZEN COMMUNICATION: GENERAL None

3. APPROVAL OF MEETING MINUTES

The meeting minutes from the January 22, 2017 Austin Integrated Water Resource Planning Community Task Force regular meeting were approved on Member Moriarty's motion and Member Lorenz's second on an 5-0-4-2 vote with Member Dawson, Member Ross, Member Richards and Member Leurig abstaining and Member Walker and Member Dwight absent.

4. STAFF BRIEFINGS, PRESENTATIONS, AND/OR REPORTS

- a. Presentation on Draft Hybrid Portfolio Scoring was provided by Marisa Flores-Gonzalez, Austin Water and Dan Rodrigo, CDM Smith. This presentation was followed by Task Force discussion and input, followed by questions and answers.
- 5. SUBCOMMITTEE REPORTS None
- 6. VOTING ITEMS FROM TASK FORCE None
- 7. FUTURE AGENDA ITEMS None

Chair Leurig adjourned the meeting at 6:45 pm.

PRESENTATION

WATER FORWARD INTEGRATED WATER RESOURCE PLAN

Water Forward Task Force Meeting March 20, 2018

Agenda

- Updated Schedule Through End Of Plan Development Process
- Presentation of Draft Plan Recommendations

Task Force Questions, Discussion, and Input

Updated Schedule Through End Of Plan Development Process

Public Workshop #5

Staff and consultants will be on hand to discuss draft plan recommendations.

Time:

Wednesday March 21, 2018 6:00 p.m. – 8:00 p.m.

Location:

Dawson Elementary School Cafeteria

3001 S 1st St., Austin, TX

Parking:

Available in front, sides and the street. Location within 10 mins walk from bus stops for 1, 5, 10 & 801

This³ will be a kid-friendly event.

Austin Water will host its next public workshop to discuss **Water Forward**, Austin's Integrated Water Resource Plan.

Staff and consultants will be on hand to discuss draft plan recommendations. We would like to gather your input as we move closer to finalizing the plan. For more information visit <u>austintexas.gov/waterforward</u>

This will be a kid-friendly event.

Wednesday March 21, 2018

6:00 p.m. - 8:00 p.m.

Dawson Elementary School Cafeteria 3001 S 1st St., Austin, TX

Parking: Available in front, sides and the strate

Field Trip to H2Oaks

- Potential Dates: Friday, May 4th or Friday, May 11th
- Group to include Task Force Members, W/WW Commissioners, and AW staff (20-25 people)
- AW to arrange transportation
- Leave from Austin in the AM, arrive mid-morning for tour of ASR and brackish desal facilities, and return to Austin early evening

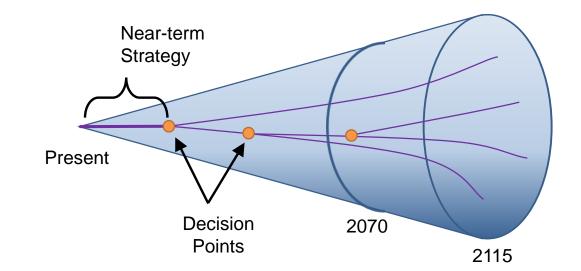
Updated Schedule

Date	Event		
March 20th	Task Force Meeting	Presentation of and TF input on draft plan recommendations	
March 21st	Public Workshop #5	Public input on draft plan recommendations	
April 3rd	Task Force Meeting	Presentation of and TF input on draft plan recommendations	
May 1st	Task Force Meeting	High level walk through of draft plan report	
June 5th	Task Force Meeting	TF input on draft plan report	
Continued on next slide			

Updated Schedule

Date	Event	
Summer 2018	Boards and Commissions Outreach	 Presentation of plan recommendations W/WW Commission Resource Management Commission Joint Sustainability Commission Environmental Commission
August 2018	Task Force Meeting	TF review of revised plan report
September 2018	Task Force Meeting	Recommendation for action on final plan
September/ October 2018	W/WW Commission Meeting	Review and recommendation for action on final plan
October/ November 2018	City Council Meeting	Action on final plan

Draft Plan Recommendations


Some Key Points About Austin's Integrated Water Resource Plan

• We're implementing an adaptive management approach

Austin

3/20

- This process is about incremental changes we can make to get closer to our desired future
- The plan is anticipated to be updated on a five year cycle to allow new data to inform planning assumptions
- Future updates to the plan will allow us to build on the work we do today and learn from our actions

Draft Plan Recommendations: 2020 to 2025 X

- Dual Plumbing Ordinance
 - Ordinance development will require dual plumbing in new development (applicability to be determined)
- Alternative Water Incentive
 - Enhancement of existing rebate programs to provide incentives for alternative water use
 - To include lot-scale rainwater harvesting, lot and community scale stormwater harvesting, lot scale blackwater reuse, and lot scale graywater harvesting
 - Implementation will target existing development

Draft Plan Recommendations: 2020 to 2025 X

- Centralized and Decentralized Reclaimed Water
 - AW will continue implementation of the centralized reclaimed water (purple pipe) system master plan with consideration of potential expansion
 - Initial steps for decentralized reclaimed options will include additional refinement of geospatial analysis and potential project identification
 - Decentralized reclaimed includes community scale distributed wastewater reuse and community scale sewer mining
- Aquifer Storage and Recovery
 - Initial steps will include further study for pilot and full project, further modeling for operational considerations, land acquisition, legal and permitting considerations, and piloting

Draft Plan Recommendations: 2025 to 2030

- Development-focused Water Use Benchmarking and Budgeting
 - Initially this option will require submittal of water use estimates for new development
 - Potential approaches to implement this requirement will be evaluated
 - If the best approach will require an ordinance, process will include stakeholder outreach and Boards and Commissions and Council action
- Landscape Transformation Incentive
 - Enhancement of existing rebate programs to provide incentives for regionally appropriate landscapes
 - Implementation will target existing development

Draft Plan Recommendations: 2025 to 2030

- Centralized and Decentralized Reclaimed Water
 - Implementation may include design and construction of decentralized reclaimed projects.
- Aquifer Storage and Recovery
 - Evaluation of pilot, potentially leading to preliminary design of a fullscale ASR facility
 - Note that to date, only preliminary costs for an ASR pilot are include in the AW capital improvements plan (CIP). CIP costs and operations and maintenance costs will need to be added in future budgets.

X

Draft Plan Recommendations: 2030 to 2035

- Development-focused Water Use Benchmarking and Budgeting
 - Option will be expanded to require that new development meet a benchmark water budget usage (compliance mechanism and applicability to be determined)
- Irrigation Efficiency Incentive
 - Implementation of an incentive could include expansion of current irrigation rebate programs to include irrigation system controllers that make flow data accessible and are capable of responding to leaks and high flow situations
 - Implementation will target existing development

Draft Plan Recommendations: 2030 to 2035

- Landscape Ordinance
 - Ordinance development could include implementing turf grass area, irrigated area, and/or irrigation area limitations (applicability to be determined)

X

- Implementation would target new development
- Alternative Water Ordinance
 - Development of an ordinance to require use of alternative water (applicability to be determined)
 - Alternative waters may include lot-scale rainwater harvesting, lot and community scale stormwater harvesting, lot scale blackwater reuse, lot scale graywater harvesting, or centralized or decentralized reclaimed water

X

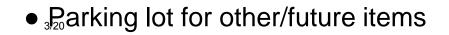
Draft Plan Recommendations: 2030 to 2035

- Aquifer Storage and Recovery
 - Target timeframe to begin construction of full-scale ASR facility
- Indirect Potable Reuse
 - Pending a successful outcome of earlier outreach, study, and permitting, target timeframe to move forward with design and construction

Draft Plan Recommendations: 2035 to 2040

X

- Aquifer Storage and Recovery
 - Target timeframe for option to be brought online and to begin storing water
- Indirect Potable Reuse
 - Target timeframe for option to be brought online


Draft Plan Recommendations: Beyond 2040

- Brackish Groundwater Desalination
 - Initial steps location of a potential aquifer and potentially water quality testing
 - Later steps permitting, land acquisition, design, and construction of facilities
- Off Channel Reservoir
 - Initial steps further study of infrastructure requirements for this option
 - Later steps permitting, land acquisition, design, and construction of facilities

Discussion Goals

- Input on plan recommendations
 - \circ Are the recommendations clear?
 - Are you comfortable with the recommendations?
- Input on implementation timeline and adaptive management plan
 - Is the phasing of options clear?
 - \circ Is the rationale behind the phasing understandable?
 - Are you comfortable with the implementation timeline?

BACKUP MATERIALS

Draft Outline of Plan Recommendations

Hybrid Portfolio Planning Context

- Plan development targeted at being adaptable for a variety of potential futures as a way to deal with climate, drought, and other uncertainties
- Planning context for identified needs and strategies to meet the needs
 - Focus was on Scenario B Period of Record (Observed Hydrology) adjusted to reflect the potential future effects of climate change
 - Hybrid Portfolios were developed to meet identified Type 1, 2, and 3 needs

Core Colorado River Supplies

- Colorado River supply will continue to be Austin's core supply in the future
- Action steps to protect and enhance this supply include:
 - Continued participation in the Lower Colorado River Authority/City of Austin Water Partnership
 - Continue to engage on potential water supply development in the basin, which may include regional partnerships as a way to implement supply or demand management options
 - Continued communication and information sharing with other entities in the basin
 - Continued participation in LCRA's Water Management Plan update processes
 - Continued participation in the Texas Water Development Board-administered Regional Water Planning process
 - Broaden our understanding of basin-wide issues, including both upstream and downstream issues
 - Share information and work with others to study potential future climate change impacts

Implementation of Best Management Practices

- Continue to implement best management practices and options identified as implementation components
 - Best management practice options
 - Require or incentivize government-recognized energy and water efficiency-labeled residential and commercial fixtures
 - Included in baseline assumptions in portfolios
 - Incentivize or require toilet, urinal, and bathroom faucet aerator efficiencies
 - Included in baseline assumptions in portfolios
 - Lake Austin Operations
 - Implementation during drought periods
 - Options identified as implementation components
 - Water rates and fees to promote water use efficiency while maintaining affordability
 - Customer education enhancements
 - Use of social media programs and web-based content to promote conservation

		Average	2040 Yield	2070	2115 Yield
Portf	olio Makeup	Drought	Target	Yield Target	Target
Future Additional Portfolio Elements					
D1	AMI	Both	3,882	5,766	9,371
D2	Water Loss Control	Both	9,326	10,918	13,064
D3	CII Ordinances	Both	1,063	1,063	1,063
D4	Benchmarking	Both	5,953	11,670	25,228
D5	Landscape Ordinance	Both	3,038	7,428	15,050
D6	Landscape Incentive	Both	321	633	929
D7	Irrigation Incentive	Both	205	427	394
D8	Lot Scale Stormwater Harvesting	Both	329	869	2,275
D9	Lot Scale Rainwater Harvesting	Both	1,550	4,032	9,251
D10	Lot Scale Gray Water Harvesting	Both	2,126	5,617	12,667
D11	Lot Scale Wastewater Reuse	Both	1,323	3,672	7,875
D12	AC Condensate Reuse	Both	1,084	2,711	5,150
S1	Aquifer Storage and Recovery	Drought	60,000	60,000	90,000
S2	Brackish Groundwater Desal	Both	-	5,000	16,000
S3	Direct Non-Potable Reuse	Both	12,000	25,000	54,600
S4	Direct Potable Reuse	Drought	-	-	-
S5	Indirect Potable Reuse	Drought	11,000	20,000	20,000
S6	LCRA Additional Supply	Both	-	-	-
S7	New Off Channel Reservoir	Both	-	25,000	25,000
S8a	Seawater Desal (Import Option)	Both	-	-	-
	Conventional Groundwater				
S8b	(Import Option)	Both	-	-	-
	Community Scale Distributed				
S9	Wastewater Reuse	Both	3,154	14,467	30,049
S10	Community Scale Sewer Mining	Both	1,000	2,211	5,284
S11	Community Scale Stormwater	Both	158	236	504
S12	Community Scale Rainwater	Both	-	-	-
	Remaining Regional Supply	Both	N/A	N/A	N/A
		Existing Por	tfolio Elements		
	DCP Implementation	Drought	N/A		
	COA Run of River	Both		N/A	N/A
	LCRA Firm Supply	Both			IN/A
	Remaining Regional Supply	Both			

Hybrid 1 Portfolio Makeup for Each Planning Horizon

DRAFT

Adaptive Management Plan - High Level Implementation Steps

Several options will need to be implemented in the near term to ramp up over time to meet future planning horizon goals. This will include demand management, decentralized, and centralized reclaimed system options.

Demand Management Options

- Advanced Metering Infrastructure and Water Loss Control
 - AW will continue implementation of these utility initiatives
- CII Ordinances and AC Condensate Reuse Ordinance
 - Options recently adopted into code
 - AW will continue to monitor these options
- Dual Plumbing Ordinance
 - Implementation will include stakeholder and Boards and Commissions outreach and input. This
 option will include development of an ordinance to require dual plumbing in new development
 (applicability to be determined) pending Boards and Commissions and Council action
- Development-focused Water Use Benchmarking and Budgeting
 - First phase Information submittal and voluntary conservation program participation
 - Initially this option will require submittal of water use estimates for new development.
 As a first step, potential approaches to implement this requirement will be evaluated. If the best approach will require an ordinance, the process will include stakeholder outreach and Boards and Commissions and Council action
 - As part of this program, City staff will provide potential water use efficiency and alternative water recommendations and information on available incentive and rebate programs. This information will tie into the development of databases to be used to develop benchmarks for efficient water usage for various development types.
 Implementation of the measure will look for ways to tie into the Service Extension Request (SER) and Austin Energy Green Building (AEGB) programs as well as AMI customer portals for residential and commercial.
 - Second phase Requirement that new development meet established water budget
 - Prior to 2040, this option will be expanded to include requirement of water use estimate submittals for new development concurrent with preliminary plan submittal to be reviewed by City staff and a requirement that new development meet a benchmark water budget (compliance mechanism to be determined).
- Irrigation Efficiency Incentive
 - Incentive program development will include stakeholder and Boards and Commissions outreach and input and will target existing development
 - Implementation of an incentive could include expansion of current irrigation rebate programs to include irrigation system controllers that make flow data accessible and are capable of responding to leaks and high flow situations
- Landscape Transformation Incentive and Ordinance
 - Initially implementation will focus on the incentive approach targeting existing development
 - Incentive program development will include stakeholder and Boards and Commissions outreach and input.
 - Implementation of an incentive could include increasing WaterWise landscape rebates for single family residential and multifamily residential and implementing a new WaterWise landscape rebate for commercial properties beyond City of Austin Land Development Code requirements
 - Later steps will include development of a landscape transformation ordinance, which will include stakeholder outreach and Boards and Commissions and Council action
 - Implementation of an ordinance could include implementing turf grass area, irrigated area, and/or irrigation area limitations

- Alternative Water Incentives and Ordinance
 - This option includes incentives and ordinances targeting alternative water use, to include lotscale rainwater harvesting, lot and community scale stormwater harvesting, lot scale blackwater reuse, and lot scale graywater harvesting
 - Initially implementation will focus on the incentive approach targeting existing development
 - Incentive program development will include interdepartmental, stakeholder, and Boards and Commissions outreach and input
 - Later steps will include development of an alternative water ordinance, which will include stakeholder outreach and Boards and Commissions and Council action

Supply Options

- Centralized and Decentralized Reclaimed Water
 - This includes the Centralized Reclaimed Water (Purple Pipe) System and decentralized reclaimed options: community scale distributed wastewater reuse and community scale sewer mining.
 - AW will continue implementation of the centralized reclaimed water (purple pipe) system master plan with consideration of potential expansion
 - Initial steps for decentralized reclaimed options will include additional refinement of geospatial analysis and potential project identification. Later steps will include design and construction of decentralized reclaimed projects.
 - Implementation of both centralized and decentralized reclaimed options will be informed by and will coordinate with one another.
- Aquifer Storage and Recovery (Carrizo-Wilcox)
 - Initial steps will include further study for pilot and full project, further modelling for operational considerations, land acquisition, legal and permitting considerations, and piloting
 - Later steps will include evaluation of pilot, potentially leading to preliminary design and construction of a full-scale ASR facility
 - To date, only preliminary costs for an ASR pilot are include in the AW capital improvements plan (CIP). CIP costs and operations and maintenance costs will need to be added in future budgets.
- Indirect Potable Reuse
 - Initial steps will build on previously performed feasibility studies for IPR and will include further study of potential option configuration, further evaluation of Lady Bird Lake inflows, and infrastructure requirements, and permitting and operational considerations
- New Off Channel Reservoir
 - Initial steps will include further study of infrastructure requirements for this option
 - Later steps will include permitting, land acquisition, design, and construction of facilities
- Brackish Groundwater Desalination
 - Initial steps will include location of a potential aquifer and potentially water quality testing
 - Later steps will include permitting, land acquisition, design, and construction of facilities
- Other options that progressed through screening but were not included in Hybrid 1 could be considered at a future point as the plan is reevaluated on a five-year cycle
 - Options include community-scale rainwater harvesting, direct potable reuse, additional LCRA supply, import options like seawater desal and conventional groundwater

Future Steps

- Post plan adoption, convene the Water Forward Task Force on a quarterly basis to support ongoing plan implementation efforts
- Determine funding and resource requirements to implement plan strategies and programs
- Update Integrated Water Resource Plan, plan recommendations, and adaptive management plan on a five-year cycle

Metrics to Monitor Conditions and Implementation Success

- Demands
 - How are water demands tracking with plan projections?
- Supplies
 - o Ratio of supply capacity to demand
- Project implementation tracking
 - Progression of projects and programs compared to estimated project milestones
 - o Estimated savings from implemented demand management options
 - Estimated yield from implemented supply options

Replace with Adaptive Mgmt Plan

Replace with Adaptive Mgmt Plan

DRAFT WATER FORWARD REPORT TABLE OF CONTENTS

1. Executive Summary

2. Introduction	
2.1 Overview of Austin's Water Supply	9
2.2 Plan Goals and Drivers	
2.3 Water Forward IWRP Mission Statement	
3. Collaborative Planning Approach	
3.1 Task Force Involvement	
3.2 Stakeholder and Public Involvement	
3.2.1 Public Workshops	
3.2.2 Community Presentations and Outreach	
3.2.3 Surveys	
4. Water Demands	
3.1 Disaggregated Demand Model	
3.1.1 Demand Model Attributes	
3.1.2 Model Development	
3.1.3 Data Sources	
3.2 Current Water Use	
3.3 Projected Baseline Water Demand	
4. Water Forward Planning Process	
4.1 Evaluation Process Overview	
4.2 Objectives and Performance Measures	
4.3 Options Screening and Characterization	
4.3.1 Options Screening Method	
4.3.2 Options Characterization Process	
4.4 Portfolio Development and Evaluation	
4.4.1 Preliminary Needs Analysis	
4.4.1 Method for Formulation of Portfolios	
4.4.1 Portfolio Evaluation Method	
5. Climate Change and Hydrology Analysis	
5.1 Description of Water Availability Model Use in Portfolio Evaluation	
5.2 Climate Change and Hydrology Analysis	
5.3 Potential Climate Impacts on Water Demand	
6. Water Conservation and Demand Management Strategies	
6.1 Water Conservation History	
6.2 Current Water Conservation Measures	
6.2.1 Ordinances	41

6.2.2 Residential Customer Programs	
6.2.3 Incentive Programs for Businesses	
6.2.4 Water Loss Control	
6.2.5 Advanced Metering Infrastructure Pilot Program	
6.2.6 Water Conservation Public Education Programs	
6.3 Water Conservation and Demand Management Strategies Considered	
6.3.1 Advanced Metering Infrastructure	
6.3.2 Utility Side Water Loss Control	
6.3.3 Commercial, Industrial, and Institutional Ordinances	
6.3.4 Development-Focused Water Use Benchmarking and Budgeting	
6.3.5 Landscape Transformation Incentive and Ordinance Options	
6.3.6 Irrigation Efficiency Incentives	
6.3.7 Alternative Water Incentive and Ordinance Options	
6.3.7.1 Lot Scale Stormwater Harvesting	
6.3.7.2 Lot Scale Rainwater Harvesting	
6.3.7.1 Lot Scale Graywater Harvesting	
6.3.7.2 Lot / Building Scale Wastewater Reuse	
6.3.7.3 Air Conditioning Condensate Reuse	
6.3.8 Other Options Considered in the Planning Process	
7. Water Supply Strategies 7.1 Current Water Supply Strategies	rr
7.1 Current water Supply Strategies 7.1.1 Surface Water System	
7.1.2 Reclaimed Water System 7.2 Water Supply Options Considered	
7.2 Water Supply Options Considered	
7.2.2 Brackish Groundwater Desalination	
7.2.2 Brackish Goundwater Desannation	
7.2.4 Direct Potable Reuse	
7.2.5 Indirect Potable Reuse	
7.2.6 Additional Supply from Lower Colorado River Authority (LCRA) 7.2.7 Off-Channel Storage Reservoir	
7.2.8 Seawater Desalination	
7.2.9 Distributed Wastewater Reuse	
7.2.10 Sewer Mining 7.2.11 Community Stormwater Harvesting	
7.2.12 Community Rainwater Harvesting 7.2.13 Conventional Groundwater	
7.2.14 Other Options Considered in the Planning Process	
7.2.14 Otter Options Considered in the Planning Process	
8. Portfolio Evaluation	
8.1 Portfolio Definitions	
8.2 Portfolio Evaluation	
8.2.1 Water Supply Benefits	
8.2.2 Economic Benefits	
8.2.3 Environmental Benefits	
8.2.4 Social Benefits	X

2

8.2.5 Implementation Benefits	X
8.2.6 Hybrid Portfolios	X
8.3 Portfolio Scoring	X
8.4 Summary of Findings	X
9. Recommendations	
9.1 Demand Management Strategies	X
9.2 Long Term Water Supply Strategies	X
9.2.1 Drought Management Strategies	Х
9.4 Case Studies	
9.5 Recommended Actions	X
9.6 Benefits of Water Forward	X
9.7 Implementation of Strategies	X

10. References

3

Assumptions for Estimated Savings by Option

Contents

1

Option – AC Condensate Ordinance

Assumptions

Assumed total square footage per sector will scale with MF Units and or COM/COA Employment projections, with per unit/per employee square footage rate estimated from ECAD Ordinance Audit data available from Austin Energy. AC Condensate production estimated using the rule of thumb of 0.5-0.6 gallons/hour produced per 1000 sq. ft. of conditioned area (per SAWS AC Condensate Collection Manual). Finally, total square footage was scaled to 2015 percentage of MF/COM/COA buildings greater than 50,000 sq. ft. (equivalent to an average cooling load of 200 tons) from aforementioned ECAD Audit data and held constant into future. Assumed 80% average cooling capacity factor and operation during 9 months of year, per SAWS AC Condensate Collection Manual guidance.

Estimated Savings-

Average Weather Demand Met By Option in 2115 Summary (Acre

Note: Drought yields to be determined. Yields are subject to change dependent on implementation approach and portfolio context. Annual cumulative volume represents the total volume produced from all systems.

	SFR	MFR	Non-Residential
Annual Cumulative Volume (AF/Year)	-	1,770	3,380
Annual Average System Volume (Gal/Year)	-	109,774	125,463

37

Option – Advanced Metering Infrastructure Assumptions

Implementation of an AMI program is assumed to entail high-resolution usage reporting for all participants as well as customer-side leak identification and notification. To this end, AMI is expected to produce savings primarily from reducing the occurrence of large customer-side leak events (100 - 550 Gallons per day, per 2015 REUWS2 study). Previous studies have shown a reduction of large customer-side leak volumes of approximately 50% from this type of implementation (Naphade, 2011). Therefore, we assume a total 15% reduction in total estimated leak volume for this analysis. Note that by 2020, it is assumed that AMI implementation will have reached 20% of all customers. Therefore, savings in 2020 represent 20% of the total estimated savings potential produced by this option.

Estimated Savings-

Savings estimates are subject to change dependent on implementation approach and portfolio context. YEAR SFR MFR COM COA NRW TOTAL 2020 210 170 200 10 0 590 2040 1,280 1,120 1,370 110 0 3,880 2070 1,710 2,080 150 0 1,820 5,760 2115 0 2,670 3,170 3,310 230 9,380 Average Weather Cumulative Total Water Savings (in AF over 100 year planning period): TOTAL 163,630 166,910 190,630 14,000 0 535,170 Average Weather Annual Average Water Savings (in AF per year): TOTAL 720 620 760 60 0 2,160

Average Weather Water Savings Summary (in AF per year):

Option - CII Ordinance for Cooling Towers and Steam Boilers

Assumptions –

Assumed 400 cooling towers that currently have 3 cycles of concentration will have 5 cycles of concentration when in compliance. The average tonnage is assumed at 375 which translates to 6750 gallons per day for blowdown under current conditions. Under future conditions, blowdown is estimated to reduce to 3375 gallons per day. Water savings are assumed for 9 months of operation. The following table shows the demand reductions associated with the cooling tower retrofits throughout the entire planning horizon.

Estimated Savings

Average Weather Water Savings Summary (in AF per year):

			<u> </u>				
	YEAR	SFR	MFR	COM	COA	NRW	TOTAL
	2020	0	40	950	70	0	1,060
	2040	0	40	950	70	0	1,060
	2070	0	40	950	70	0	1,060
	2115	0	40	950	70	0	1,060
A	verage Weather (Cumulative Total	Water Savings (in AF over 100 ye	ear planning peri	od):	
	TOTAL	0	3,540	91,460	7,080	0	102,080
A	verage Weather /	Annual Average	Water Savings (in	n AF per year):			
	TOTAL	0	40	950	70	0	1,060

Option – Development-focused Water Use Benchmarking and Budgeting

Assumptions –

No savings are assumed for the water estimate submittal action; however this is a critical step to getting to the water budgeting measure which has more substantial savings potential. At the 2040 planning horizon, savings are assumed at 10% for the residential (SFR/MFR), COM, and City of Austin (COA) sectors for new development. An assumption of 10% savings is maintained for the 2070 and 2115 planning horizons. The underlying assumption is that Advanced Metering Infrastructure (AMI) messaging is fully implemented and utilized for the water budgeting action.

Estimated Savings –

Average Weather Water Savings Summary (in AF per year):

	YEAR	SFR	MFR	COM	COA	NRW	TOTAL
	2020	0	0	0	0	0	0
	2040	2,400	2,260	2,050	70	0	6,780
	2070	4,370	4,430	4,310	340	0	13,450
	2115	<mark>8,880</mark>	10,030	9,290	1,480	0	29,680
A	verage Weather (Cumulative Total	Water Savings (in AF over 100 y	ear planning per	iod):	
	TOTAL	405,200	431,990	407,220	47,710	0	1,292,120
A	verage Weather /	Annual Average	Water Savings (in	n AF per year):			
	TOTAL	5,330	5,680	5,360	630	0	17,000

Option – Irrigation Efficiency Incentive

Assumptions -

The program incentivizes adoption of smart irrigation controllers to improve irrigation system efficiency by identifying leaks and zones with high flows and reducing excessive watering related to improper irrigation scheduling, with 8% savings associated with improved irrigation system performance based on previous literature review and adjustment for one-day-a-week watering restrictions. Base case irrigation system usage (per year) was assumed as the median of MF/COM billing data for 2015 and average of Base Year Irrigation Demand per SF Household from Disaggregated Demand Model. Number of eligible irrigation systems were projected for each planning horizon using ratio of parcels with registered irrigation systems to total parcels for each sector (assumed constant during planning period) and growing with total number of existing parcels in each planning horizon. Some percentage of these systems are likely to abandoned (i.e., not in-use) which reflects a caveat of this estimation process. Therefore, reported savings represent the maximum savings potential. Participation rates for all three sectors are projected to reach 20% by 2040 and 30% by 2070. Participation is assumed to remain constant beyond 2070 due to assumed saturation of smart irrigation system controllers in the marketplace by the 2070 planning horizon.

Estimated Savings –

	Savings estimates are subject to change dependent on implementation approach and portfolio context.									
	YEAR	SFR	MFR	COM	COA	NRW	TOTAL			
	2020	20	10	10	0	0	40			
	2040	140	40	70	0	0	250			
	2070	310	90	170	0	0	570			
Į.	2115	310	90	170	0	0	570			
A	verage Weather (Cumulative Tota	l Water Savings (in AF over 100 y	ear planning per	iod):				
	TOTAL	22,190	6,230	12,220	0	0	40,640			
Α	verage Weather /	Annual Average	Water Savings (ii	n AF per year):						
	TOTAL	230	60	130	0	0	420			

Average Weather Water Savings Summary (in AF per year):

Option – Landscape Transformation Incentives

Assumptions -

Savings Forecast: Incentive would only apply to existing customers who have satisfied rebate requirements similar to those in effect now. Assuming average conversion of 900 sq. ft. per single family residential (SFR) participant and assuming 5 Gallons reduction of demand per sq. ft. converted, from previous AW Landscape Transformation Rebate data. Currently existing MFR/COM participants are assumed to convert 30% of their improved landscape on average (improved landscape assumed to be 50% of total pervious cover on parcel) from turf to water-saving vegetation. Future COM/MF parcels are assumed to develop in accordance with the existing Landscape Ordinance, which requires plant selection from the City of Austin Preferred Plant List for landscape areas. This requirement does not apply to SFR parcels. The same savings per square foot of converted area are assumed as for the SFR sector.

Program Participation: Participation rates for all three sectors assumed to reach 10% by 2040, 20% by 2070 and 30% by 2115.

Estimated Savings –

Average Weather Water Savings Summary (in AF per year):

	YEAR	SFR	MFR	COM	COA	NRW	TOTAL
	2020	0	0	0	0	0	0
	2040	290	10	11	0	0	311
	2070	840	21	22	0	0	883
	2115	1,880	31	33	0	0	1,944
A	verage Weather (Cumulative Total \	Nater Savings (ir	AF over 100 yea	ar planning perio	od):	
	TOTAL	82,010	1,750	1,840	0	0	85,600
A	verage Weather /	Annual Average W	ater Savings (in	AF per year):			
	TOTAL	850	20	20	0	0	890

Option – Landscape Transformation Ordinance Assumptions –

Savings Forecast: Ordinance would only apply to new construction parcels. Average Single Family (SF) transformed landscape area assumed as product of average SF parcel size (6300 sq. ft.), average SF pervious area (70% per COA Watershed Protection Department), maximum recommended turf grass area (50% per Austin Homebuilders' Association Sensible Landscape Guidance Document) and average proportion of yard scape that is turf grass (1500 sq. ft. of turf per 1900 sq. ft. of total yard area per AW Conservation staff). This results in an average converted area of ~1800 sq. ft. per SF parcel.

Significant outdoor water savings have been achieved to date through the combined effect of the existing landscape ordinance for COM/MF development, in effect since 1982 and most recently revised in 2010, recent market trends that have shifted toward native and adaptive plant palettes, and City water codes including the Water Conservation Code. A new Landscape Transformation Ordinance is assumed to entail further requirements to reduce irrigation water use by 10% as compared to similar existing development. This reduction could be achieved through a variety of mechanisms, including reduction of irrigated area, installation of drought tolerant plants, and reductions of turf area. The total number of parcels were estimated and projected into the future by assuming a constant ratio of 9 multi-family (MF) units per parcel and 56 commercial (COM) employees per parcel, from historical data.

Note: The above assumptions were developed for the high-level strategic integrated water resource plan (IWRP) development process. Should this option be incorporated into IWRP plan recommendations, actual new ordinance details would need to be developed through subsequent implementation processes with future additional stakeholder and public input opportunities.

Estimated	Savings –
-----------	-----------

Average Weather Water Savings Summary (in AF per year):

	Savings estimates are subject to change dependent on implementation approach and portfolio context.								
	YEAR	SFR	MFR	COM	COA	NRW	TOTAL		
	2020	0	0	0	0	0	0		
	2040	2,490	280	460	0	0	3,230		
	2070	6,440	770	810	0	0	8,020		
	2115	13,510	1,320	1,750	0	0	16,580		
A	verage Weather \	Water Savings - O	Cumulative Total	(in AF over 100	year planning pe	riod):			
	TOTAL	614,280	66,350	82,120	0	0	762,750		
A	verage Weather /	Annual Average	Water Savings (in	n AF per year):					
	TOTAL	6,750	730	900	0	0	8,380		

Option – Water Loss Control Utility Side

Assumptions -

ILI of 2.7 by 2020 reducing to 2.0 by 2040 and maintaining the 2.0 to 2115. No assumptions are made for reduction of losses between the diversions and treatment plant. Yield is calculated as a function of baseline demands.

Estimated Savings -

Average Weather Water Savings Summary (in AF per year):

	YEAR	SFR	MFR	COM	COA	NRW	TOTAL
	2020	0	0	0	0	3,110	3,110
	2040	0	0	0	0	9,330	9,330
	2070	0	0	0	0	10,920	10,920
	2115	0	0	0	0	13,060	13,060
Α	verage Weather Wa	ter Savings - Cumula	tive Total (in AF ove	r 100 year plann	ing horizon):		
	TOTAL	0	0	0	0	975,680	975,680
Α	verage Weather Anr	nual Average Water	Savings (in AF per ye	ear):			
	TOTAL	0	0	0	0	10,160	10,160

Option – Alternative Water Ordinances and Incentives – Lot Scale Rainwater, Stormwater, Graywater and Blackwater

Option	Scenario	Sector				End Use	Saturation rate in 2115	Type of development
		SFR	MFR	COM	COA			
	Outdoor	Y				IRR	40%	
	Outdoor		Y			IRR	10%	
Lot scale	Outdoor			Y		IRR	10%	
Rainwater	Dual Pipe	Y				IRR, TL, CW		All New
Harvesting	Dual Pipe		Y			IRR, TL	20%	
	Dual Pipe		Y			IRR, TL, HVC	20%	
	Potable	Y				ALL		

Lot Scale Rainwater Harvesting - Assumptions

Implementing rainwater harvesting in new developments provides an opportunity to plumb the residence or building with internal connections for toilet flushing or clothes washing, where used indoor treatment is required.

Three scenarios are considered for simplicity. These are:

1. A proportion of newly constructed SFR, MFR and COM buildings have a rainwater tank supplying outdoor end uses.

2. A proportion of newly constructed SFR, MFR and COM buildings have a rainwater tank supplying outdoor end uses and indoor (non-potable) end uses via dual reticulation.

3. A proportion of newly constructed SFR buildings have a rainwater tank supplying all end uses (i.e. potable supply).

All scenarios assume back-up supply from the centralized water distribution system.

Option	Scenario	2020 Yield	2040 Yield	2070 Yield	2115 Yield
		(AF/Yr)	(AF/Yr)	(AF/Yr)	(AF/Yr)
	Outdoor	-	937	2410	5088
	Outdoor	-	54	151	425
Lot scale	Outdoor	-	82	209	498
Rainwater	Dual Pipe	-	-	-	-
Harvesting	Dual Pipe	-	195	556	1562
	Dual Pipe	-	281	706	1678
	Potable	-	-	-	-

Lot Scale Rainwater Harvesting - Estimated Savings

Lot Scale Stormwater Harvesting - Assumptions

Option	Scenario	Sector				End Use	Saturation rate in 2115	Type of development
		SFR	MFR	COM	COA			
Let seele	Outdoor		Y			IRR	20%	
Lot scale	Outdoor			Y		IRR	20%	
Storm	Dual Pipe		Y			IRR, TL, CW		All New
water Harvesting	Dual Pipe			Y		IRR, TL, CW, HVC		

Implementing stormwater harvesting in new developments provides an opportunity to plumb the building with internal connections for toilet flushing, clothes washing or to cooling towers. Retrofitting existing buildings with internal connections to a dual supply source can be cost prohibitive and/or practically difficult, and so it is assumed for the purposes of this study that stormwater harvesting at the lot scale for existing development would be used solely for irrigation/landscaping. Where used for irrigation/landscaping only, it is assumed that there will be filtration. Where used to supply indoor non-potable end-uses, UV Disinfection is assumed. Storage is assumed to be an underground tank/cistern. All scenarios assume back-up supply from the centralized water distribution system.

Two scenarios are considered for simplicity. These are:

1. A proportion of newly constructed MFR and COM buildings have an underground stormwater harvesting tank supplying outdoor end uses.

2. A proportion of newly constructed MFR and COM buildings have an underground stormwater harvesting tank supplying outdoor end uses and indoor (non-potable) end uses via dual reticulation.

Option	Scenario	2020 Yield	2040 Yield	2070 Yield	2115 Yield
		(AF/Yr)	(AF/Yr)	(AF/Yr)	(AF/Yr)
Lot scale	Outdoor	-	180	496	1391
Storm	Outdoor	-	149	373	885
water	Dual Pipe	-	-	-	-
Harvesting	Dual Pipe	-	-	-	-

Lot Scale Stormwater Harvesting - Estimated Savings

Lot Scale Gray water Harvesting (Graywater) - Assumptions

Option	Scenario		Se	ctor		End Use	Saturation rate in 2115	Type of development
		SFR	MFR	COM	COA			
	Outdoor	Y				IRR	10%	
	Outdoor		Y			IRR		
Gray Water	Outdoor					IRR		All New
Harvesting	Dual Pipe	Y				IRR, TL, CW	10%	All New
	Dual Pipe		Y			IRR, TL, CW	20%	
	Dual Pipe			Y		IRR, TL	15%	

Graywater is not considered for outdoor end uses in Critical Water Quality Zones, floodplains, or the Edwards Aquifer Recharge Zone.

Two scenarios are considered for simplicity. These are:

1. A proportion of newly constructed SFR, MFR and COM buildings have a graywater diversion system supplying outdoor end uses. Graywater diversion is untreated, and therefore cannot be stored and can only be used to supply sub-surface irrigation

2. A proportion of newly constructed SFR, MFR and COM buildings have a graywater treatment system supplying outdoor and indoor end uses.

All scenarios assume back-up supply from the centralized water distribution system.

Gray water Harvesting (Graywater) - Estimated Savings

Option	Scenario	2020 Yield	2040 Yield	2070 Yield	2115 Yield
		(AF/Yr)	(AF/Yr)	(AF/Yr)	(AF/Yr)
	Outdoor	-	244	631	1336
	Outdoor	-	-	-	-
Gray water	Outdoor	-	-	-	-
Harvesting	Dual Pipe	-	571	1461	2860
	Dual Pipe	-	991	2702	6832
	Dual Pipe	-	321	823	1638

Lot Scale Wastewater Reuse (Blackwater) - Assumptions

Option	Scenario		Se	ctor		End Use	Saturation rate in 2115	Type of development
		SFR	MFR	COM	COA			
Building Scale	Dual Pipe		Y			IRR, TL, CW		All New
Wastewater Reuse	Dual Pipe					IRR, TL, CW, HVC		

Blackwater reuse is not considered for outdoor end uses in Critical Water Quality Zones, floodplains, or the Edwards Aquifer Recharge Zone. This option assumes back-up supply from the centralized water distribution system.

One scenario is considered for simplicity. This is:

1. A proportion of newly constructed MFR and COM buildings have a blackwater treatment system supplying outdoor and non-potable indoor end uses.

Note that for higher saturation scenarios, 50% and higher, there would need to be consideration given to the minimum dry weather flows that must be retained in the centralized wastewater system to maintain the necessary scouring velocities.

Building Scale Wastewater Reuse (Blackwater) – Estimated Savings

Option	Scenario	2020 Yield (AF/Yr)	2040 Yield (AF/Yr)	2070 Yield (AF/Yr)	2115 Yield (AF/Yr)
Building Scale	Dual Pipe	-	-	-	-
Wastewater Reuse	Dual Pipe	-	1,323	3,672	7,875

Net Diversion Metrics Summary - from WAM Results

				Нуbı	rid #1						Нуbı	id #2	
Hydrologic Condition	Demand Projection	Average Annual Diversion from River, ac-ft	Average Annual Return Flow to River, ac-ft	Annual River Demand, ac-	Net Diversion (Diversion minus Return Flow), ac-ft	divided by	Return Flow divided by Avg. Annual Diversion	Averag Annua Diversio from Rive ac-ft	l on er.	Average Annual Return Flow to River, ac-ft	Annual River Demand, ac-	Net Diversion (Diversion minus Return Flow), ac-ft	divided
Stationary	2020	143,547	105,598	143,547	37,949	0.264	0.736	143,	547	105,598	143,547	37,949	0.
Stationary	2040	161,397	113,642	160,677	47,755	0.297	0.704	161,	292	113,642	160,719	47,650	0.
RCP 8.5	2040	161,582	113,583	160,931	47,999	0.298	0.703	161,	293	113,547	160,931	47,747	0.
Stationary	2070	207,018	137,068	202,448	69,950	0.346	0.662	203,	685	137,068	202,398	66,617	0.
RCP 8.5	2070	207,397	136,755	203,030	70,642	0.348	0.659	201,	247	136,153	202,748	65,094	0.
Stationary	2115	285,188	177,619	279,283	107,569	0.385	0.623	279,	044	177,619	279,143	101,425	0.
RCP 8.5	2115	279,984	176,188	276,942	103,796	0.375	0.629	261,	947	177,496	276,622	84,451	0.
			Geomet	ric Mean	60,453	0.318	0.681			Geomet	ric Mean	56,179	0.

				Max Con	servation			Min Cost							
Hydrologic Condition	Demand Projection	Average Annual Diversion from River, ac-ft	Average Annual Return Flow to River, ac-ft	Annual River Demand, ac-	Net Diversion (Diversion minus Return Flow), ac-ft	divided by	Return Flow divided by Avg. Annual Diversion	Average Annual Diversion from River, ac-ft	Average Annual Return Flow to River, ac-ft	Average Annual River Demand, ac- ft	Net Diversion (Diversion minus Return Flow), ac-ft	divided by	Return Flow divided by Avg. Annual Diversion		
Stationary	2020	143,519	107,008	143,519	36,511	0.254	0.746	143,523	103,526	143,523	39,997	0.279	0.721		
Stationary	2040	159,351	113,418	158,631	45,933	0.290	0.712	173,944	118,420	171,032	55,524	0.325	0.681		
RCP 8.5	2040	159,629	113,418	158,920	46,211	0.291	0.711	174,563	118,420	171,146	56,143	0.328	0.678		
Stationary	2070	201,685	134,744	198,171	66,941	0.338	0.668	231,752	147,016	228,114	84,735	0.371	0.634		
RCP 8.5	2070	202,461	134,744	199,096	67,717	0.340	0.666	231,056	146,744	227,714	84,312	0.370	0.635		
Stationary	2115	281,393	184,433	277,787	96,960	0.349	0.655	314,579	192,368	330,067	122,211	0.370	0.612		
RCP 8.5	2115	276,576	184,433	275,267	92,143	0.335	0.667	288,911	190,592	326,029	98,319	0.302	0.660		
			Geomet	ric Mean	56,962	0.303	0.696		Geomet	ric Mean	65,684	0.318	0.673		

				Max Re	liability					Min Imple	mentation						Max Local Control				
Hydrologic Condition	Demand Projection	Average Annual Diversion from River, ac-ft	Average Annual Return Flow to River, ac-ft	Annual River	Net Diversion (Diversion minus Return Flow), ac-ft	divided by	Return Flow divided by Avg. Annual Diversion	Average Annual Diversion from River, ac-ft	Average Annual Return Flow to River, ac-ft	Average Annual River Demand, ac- ft	Net Diversion (Diversion minus Return Flow), ac-ft	Net Diversion divided by Avg. Annual Demand	Return Flow divided by Avg. Annual Diversion	Hydrologic Condition	Demand Projection	Average Annual Diversion from River, ac-ft	Average Annual Return Flow to River, ac-ft	Average Annual River Demand, ac- ft	Net Diversion (Diversion minus Return Flow), ac- ft	Net Diversion divided by Avg. Annual Demand	Return Flow divided by Avg. Annual Diversion
Stationary	2020	143,547	104,723	143,547	38,824	0.270	0.730	143,523	104,120	143,523	39,404	0.275	0.725	Stationary	2020	143,560	104,876	143,560	38,684	0.269	0.731
Stationary	2040	166,329	116,682	167,437	49,646	0.297	0.702	167,184	114,694	166,463	52,489	0.315	0.686	Stationary	2040	162,870	113,613	162,150	49,258	0.304	0.698
RCP 8.5	2040	165,655	116,026	167,667	49,629	0.296	0.700	167,245	114,694	166,539	52,551	0.316	0.686	RCP 8.5	2040	163,062	113,613	162,354	49,449	0.305	0.697
Stationary	2070	212,727	141,662	215,204	71,065	0.330	0.666	221,607	139,327	217,964	82,280	0.377	0.629	Stationary	2070	210,173	136,364	206,529	73,809	0.357	0.649
RCP 8.5	2070	206,877	139,185	215,430	67,693	0.314	0.673	221,426	139,121	217,994	82,305	0.378	0.628	RCP 8.5	2070	210,431	136,198	206,932	74,234	0.359	0.647
Stationary	2115	291,113	186,456	303,398	104,657	0.345	0.640	315,164	183,047	311,985	132,117	0.423	0.581	Stationary	2115	286,764	173,638	282,859	113,126	0.400	0.606
RCP 8.5	2115	259,670	173,796	301,031	85,875	0.285	0.669	308,496	181,053	308,106	127,442	0.414	0.587	RCP 8.5	2115	281,582	171,746	280,722	109,836	0.391	0.610
			Geomet	ric Mean	57,851	0.291	0.693		Geomet	ric Mean	68,268	0.341	0.654				Geomet	ric Mean	62,843	0.328	0.670

The tables above show the modeled estimates based on various scenarios for planning, each of which have assumptions about effluent production and reuse.

Actual future diversions and return flows will depend on future conditions and strategy implementation.

ersion Return Flow ed by divided by Avg. Annual nnual and Diversion 0.264 0.736 0.296 0.705 0.297 0.704 0.329 0.673 0.321 0.677 0.363 0.637 0.305 0.678 0.296 0.698

Notes:

All results are for the period of record simulation, February 1940 through December 2016. January 1940 is excluded because of a 1-month lag in discharging return flows in the WAM which results in zero return flows for January 1940.

Average Annual Diversion from the River is the summation of all water diverted by Austin to meet municipal demand that is derived from the City's water rights and LCRA supplies. The summation includes the river diversions to refill the ASR and OCR (if present in the portfolio). The ASR has a small loss rate associated with it, and the OCR has evaporative losses. Therefore, it is possible for the Averge Annual Diversion from the River to be slightly higher than the Average Annual Total Demand when diversions to offset ASR losses and OCR evaporation are considered.

The Average Annual Total Demands are the average of derived from simulated monthly demands. The monthly demand change according to Austin's implementaiton of drought contingency plan (DCP) measures in response to combined storage in lakes Buchanan and Travis. Simulations with lower lake levels will have lower monthly and annual averge demands.

For example, for demand projections in 2115 with climate adjustment are 6% higher than for demand projections in 2115 with a stationary climate. However, simulated lake levels are lower with climate trend adjustments to the stationary hydrologic conditions. Therefore, average annual total demands are lower in the climate adjusted simulation.

The Geometric Mean is calculated for 2020 Stationary, 2040 RCP 8.5, 2070 RCP 8.5, and 2115 RCP 8.5. Results for 2040 Stationary, 2070 Stationary, and 2115 Stationary are provided for informational purposes only.

Austin Water - Demand Assumptions for Water Forward Modeling DRAFT - SUBJECT TO CHANGE, 7/27/2017

Climate Adjusted Demands

	DEMAND CATEGORY / PARAMETER	Year						
	All Demands in units of acre-feet per year.	2020	2040	2070	2115	2040	2070	2115
[1]	Firm Demands					2.0%	4.0%	6.0%
[2]	City of Austin Municipal Baseline Demand (Avg Year)	153,853	207,453	296,992	467,392	211,602	308,872	495,436
[3]	City of Austin Municipal Direct Reuse (Avg Year)	3,816	3,816	3,816	3,816	3,816	3,816	3,816
[3a]	City of Austin Parks and LBL Evap	1,415	1,415	1,415	1,415	1,443	1,472	1,500
[4]	City of Austin Baseline + Reclaimed + Parks + LBL Evap Demand Total	159,084	212,684	302,223	472,623	216,862	314,159	500,752
[5]	Fayette County (Power generation downstream of lakes)	20,000	20,000	20,000	20,000	20,000	20,000	20,000
[6]	Sim Gideon / Lost Pines Demand	0	0	0	0	0	0	0
[7]	Llano County (Power generation near/upstream of lakes)	5,500	11,300	20,000	20,000	11,300	20,000	20,000
[8]	LCRA - Power Plant Demand	25,500	31,300	40,000	40,000	31,300	40,000	40,000
[9]	Fayette County	9,000	9,000	9,000	9,000	9,000	9,000	9,000
[10]	Travis County	9,000	9,500	9,500	9,500	9,500	9,500	9,500
[11]	City of Austin - Power Plant Demand	18,000	18,500	18,500	18,500	18,500	18,500	18,500
[12]	Municipal Firm Contract Demand	65,684	97,170	143,046	169,000	99,113	148,768	179,140
[13]	LCRA New Contracts (Region K Table 5-19)	2,877	19,154	33,654	45,000	19,537	35,000	47,700
[14]	Domestic lakeside use	5,000	5,000	5,000	5,000	5,000	5,000	5,000
[15]	LCRA Firm Irrigation	4,800	7,400	10,000	10,000	7,548	10,000	10,000
[16]	BRA - HB 1437 Demand	6,386	25,000	25,000	25,000	25,000	25,000	25,000
[17]	Manufacturing and Mining Demand	16,253	18,277	20,300	24,000	18,642	21,112	25,440
[18]	Other (Conveyance and Emergency Release)	5,000	5,000	5,000	5,000	5,000	5,000	5,000
[19]	Other Municipal, Industrial, Misc Firm Demands	106,000	177,000	242,000	283,000	179,840	249,880	297,280
[20]	Total Firm Demand, Rows 4+8+11+19:	308,584	439,484	602,723	814,123	446,502	622,540	856,532
[21]	STPNOC ROR + LCRA Backup	102,000	102,000	102,000	102,000	102,000	102,000	102,000
[22]	Corpus Christi Garwood Water Rights	35,000	35,000	35,000	35,000	35,000	35,000	35,000
	Interruptible Agricultural Demand							
[23]	Garwood Irrigation Demand (Dry - 90th Percentile)	89,700	85,300	79,200	69,300	90,369	86,546	77,258
[24]	Gulf Coast Irrigation Demand (Dry - 90th Percentile)	147,400	113,400	103,900	88,600	136,928	127,371	111,875
[25]	Lakeside Irrigation Demand (Dry - 90th Percentile)	135,500	128,100	119,300	106,700	137,464	131,580	121,074
[26]	Pierce Ranch Irrigation Demand (Dry - 90th Percentile)	27,000	25,600	24,100	22,300	26,091	25,608	24,390
[27]	Total Interruptible Agricultural Demand, Rows 23+24+25+26:	399,600	352,400	326,500	286,900	390,852	371,106	334,597

Note: All other surface water demands in the water availability model are represented at full water right authorization levels.