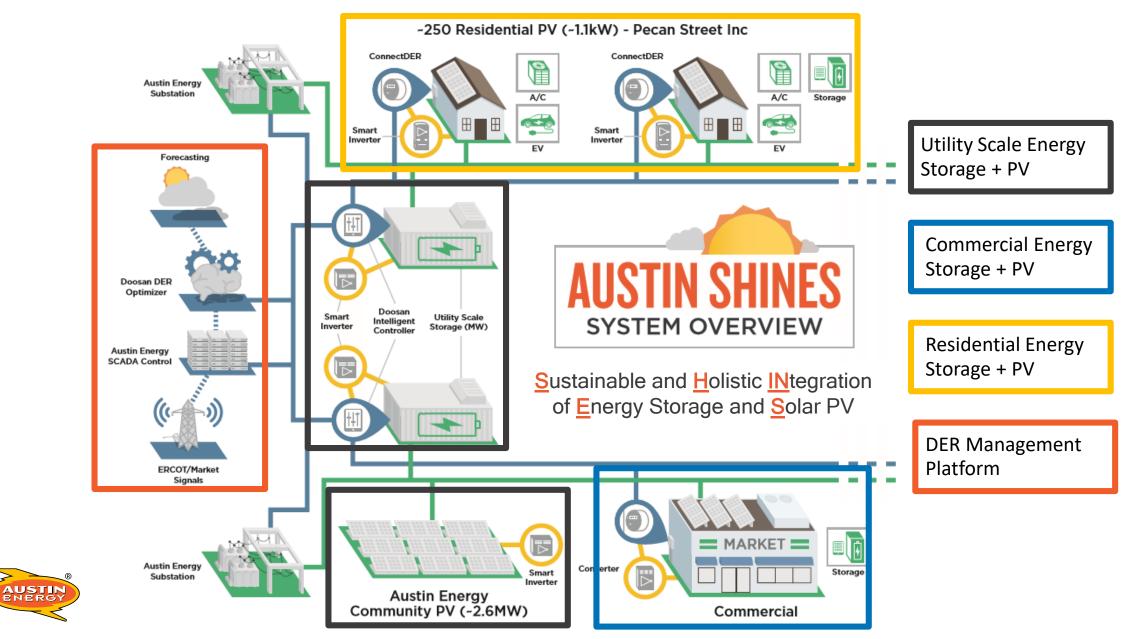


Austin SHINES Project Update

William Kelly Distribution Process Manager – Advanced Grid Technologies



October 12, 2020 (Formerly Item 16, September 14, 2020) © 2018 Austin Energy

Project Description

The Austin SHINES Concept

Austin SHINES Assets

Grid Scale

- Kingsbery Energy Storage System
- Mueller Energy Storage System
- La Loma Community Solar Farm

Commercial Scale

• 3 Aggregated batteries + existing solar PV

Residential Scale

- 6 Aggregated batteries + existing solar PV
- 1 Electric Vehicle installed as Vehicle-to-Grid (V2G)
- 12 Utility-Controlled PV Smart Inverters
- 6 Autonomously-Controlled Smart Inverters

DER Value Strategies

Value Streams	Use Case	
Energy Market -	Utility Peak Load Reduction	Lower transmission cost obligation
	Day-Ahead Energy Arbitrage	Realize economic value through price differential
	Real-Time Price Dispatch	Realize economic value from real-time price spikes
Grid Reliability -	Voltage Support	Reduce losses and increase solar generation
	Distribution Congestion Management	Increase local grid reliability
Utility Customer —	Demand Charge Reduction	Lower customer bills and realize system benefit

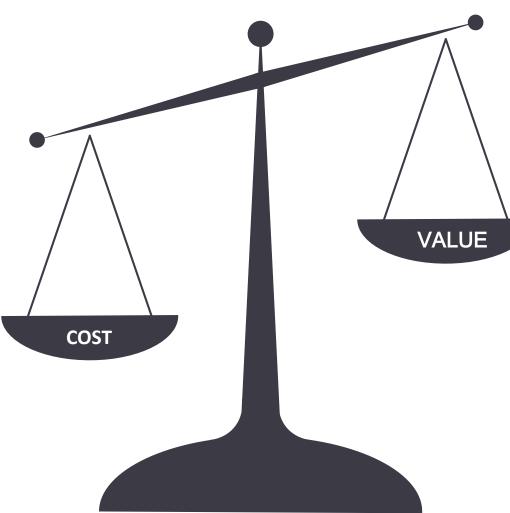
SHINES Asset 'Value Stack'

DERO Application (application benefit)		Kingsbery ESS (grid-scale)	Mueller ESS (grid-scale)	Agg. PV/ESS (commercial)	Agg. PV/ESS (residential)	Solar PV (residential)
ECONOMIC	Utility Peak Load Reduction (Lower transmission cost obligation)			Ņ.	ţĊ.	
	Day-Ahead Energy Arbitrage (Realize economic value through price differential)	-Ò-	÷Ċ;-	Ņ.	÷Ċ:	
	Real-Time Price Dispatch (Realize economic value from real-time price spikes)	-Ò-	÷Ċ;-	ġ.	-Ò:	
RELIABILITY	Voltage Support (Reduce losses and increase solar generation)	-Ò-	Ņ.		Ċ.	÷Ò;-
	Distribution Congestion Management (Increase local grid reliability)	÷Ò:-	-Ò-		Ċ.	
CUST	Demand Charge Reduction (Lower customer bills and realize system benefit)			-Ò-		

Findings To Date

Technical Lessons

INTEROPERABILITY: Lack of industry wide standards for communication & system integration protocols


SIZING: Optimal system design highly dependent on value application and grid location

SITING: Building codes & permitting processes unable to keep pace with DER

SAFETY: Development & deployment of emerging technologies can outpace present day safety measures

Economic Lessons

HOLISTIC CONTROL: "Value stacking" is possible but prioritization of use cases is critical

RELIABILITY: Highly dependent on location and the underlying characteristics of the interconnected grid

COST vs VALUE: The value of battery storage does not yet outweigh the costs

LOAD MANAGEMENT: Load management can be impacted utilizing DER, but may not be economical

Tipping Points Investing at scale in DER and DER Integration

Economic Imperative

A primary determinant Deployment costs decrease Deployment value increasing Many combinations of variables

Technical Requirements

A wide range of technology benefits Should be considered compared to traditional alternatives

Policy Imperatives

Regulatory changes may dictate that storage is the best option

Market changes

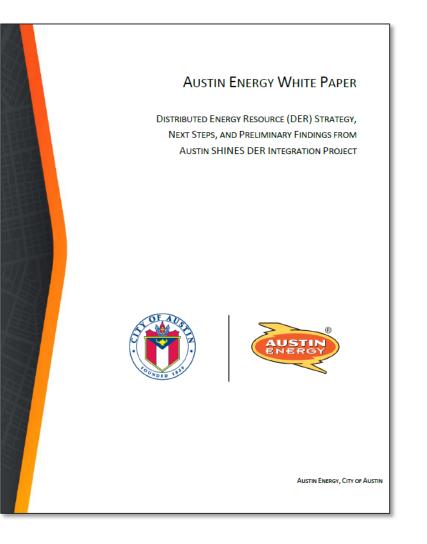
Mandates or Incentives

IN THE MEANTIME: Maintain readiness through continued research

Austin SHINES Grant Reporting

https://austinenergy.com/ae/green-power/austinshines/final-deliverable-reports

- System Levelized Cost of Electricity (System LCOE) Methodology
- 2. Software Platform Product Description
- 3. Optimal Design Methodology
- Ownership and Operation Models for DER System Performance
- 5. Economic Modeling and Optimization
- 6. Fielded Assets



DER Whitepaper

https://austinenergy.com/ae/about/reports-and-data-library/generationresource-planning-update/euc-resource-planning-working-group

- Written in September 2019
- Used in development of Austin Energy's 2019 Generation Resource Plan update
- Summarizes lessons learned & next steps based upon the to date completed SHINES work
- Will serve as an input to DER Roadmap for Austin Energy

Confidential & Proprietary ©2018 Austin Energy. All rights reserved. Austin Energy and the Austin Energy logo and combinations thereof are trademarks of Austin Energy, the electric department of the City of Austin, Texas. Other names are for informational purposes only and may be trademarks of their respective owners.