

ITEM FOR ENVIRONMENTAL COMMISSION AGENDA

COMMISSION MEETING DATE:	June 1, 2022
NAME & NUMBER OF PROJECT:	8020 Parmer Lane SH 130 NW C8J-2021-0141.0A
NAME OF APPLICANT OR ORGANIZATION:	Pape-Dawson Engineers, Travis Moltz
LOCATION:	8106 E PARMER LN, Manor, TX 78653
COUNCIL DISTRICT:	Council District does not apply in Extraterritorial Jurisdiction
ENVIRONMENTAL Review staff:	Pamela Abee-Taulli, Environmental Program Coordinator Development Services Department <u>Pamela.abee-taulli@austintexas.gov</u> , 512.974.1879
WATERSHED:	Gilleland Creek and Harris Branch Creek Watersheds, Suburban Classification, Desired Development Zone
Request:	 Variance request is as follows: Request to vary from LDC 30-5-341 to allow fill over 4 feet to 15 feet. Request to vary from 30-5-261(G) to allow floodplain modification in a critical water quality zone buffer.
STAFF Recommendation:	Staff recommends this variance, having determined the findings of fact to have been met.
STAFF CONDITION:	 Staff recommends the following conditions: The applicant will pay into the Riparian Zone Mitigation Fund for both the area of Zone 1 (Floodplain outside of the CWQZ) and the area of Zone 2 (Floodplain within the CWQZ) using the appropriate ratios per ECM 1.7.6. Development of the site will be carried out as described in Exhibits 1-6, attached in the staff variance packet.

Development Services Department Staff Recommendations Concerning Required Findings

Project Name:	8020 Parmer Lane SH 130 NW
Ordinance Standard:	Watershed Protection Ordinance
Variance Request:	Request to vary from LDC 30-5-341 to allow fill over 4 feet to 15.

Include an explanation with each applicable finding of fact.

A. Land Use Commission variance determinations from Chapter 25-8-41 of the City Code:

1. The requirement will deprive the applicant of a privilege available to owners of similarly situated property with approximately contemporaneous development subject to similar code requirements.

Yes Two roads border the site, SH 130 and Parmer Ln. SH 130 cannot be used for access, because there is a Restriction of Access recorded for SH 130, which TxDOT will not support lifting or modifying for a full access driveway. Regarding Parmer Ln., the entirety of the Parmer Ln. frontage is located within floodplain and creek buffer. In addition, access is blocked by wetlands.

Variances have been granted in similarly restrictive circumstances to allow necessary access to a site.

The fill variance is required in order for the applicant to access the site with a bridge spanning wetlands, floodplain, and creek buffer.

- 2. The variance:
 - a) Is not necessitated by the scale, layout, construction method, or other design decision made by the applicant, unless the design decision provides greater overall environmental protection than is achievable without the variance;
 - Yes The variance is not necessitated by a design decision by the applicant, but by the need to access the site across a

floodplain. The only option for access to the property is to build a bridge crossing over the existing waterway, a tributary to Gilleland Creek, on the southern portion of the site. The proposed fill is the minimum necessary to build the bridge so that the low chord of the bridge is two feet above the 100-year water surface elevation of the 100-year floodplain, as required by code for safe access.

- b) Is the minimum deviation from the code requirement necessary to allow a reasonable use of the property;
 - Yes The variance for fill is the minimum necessary to build the bridge to a height that will allow safe access to the site across the floodplain.
- c) Does not create a significant probability of harmful environmental consequences.
 - Yes A flood study has been completed and reviewed by the City of Austin to prove no adverse impact to other properties. The bridge piers have been placed to minimize the impact to the waterway and existing wetland CEFs. Existing impervious cover in the CEF and CWQZ will be removed, and a CEF mitigation and floodplain mitigation plan has been proposed and reviewed by City of Austin staff.
- 3. Development with the variance will result in water quality that is at least equal to the water quality achievable without the variance.
 - Yes Full water quality treatment for the proposed impervious cover on site will be provided with the site plan. Water Quality treatment will be provided at the full measure required by the code.
- B. The Land Use Commission may grant a variance from a requirement of Section 25-8-422 (Water Supply Suburban Water Quality Transition Zone), Section 25-8-452 (Water Supply Rural Water Quality Transition Zone), Section 25-8-482 (Barton Springs Zone Water Quality Transition Zone), Section 25-8-368 (Restrictions on Development Impacting Lake Austin, Lady Bird Lake, and Lake Walter E. Long), or Article 7, Division 1 (Critical Water Quality Zone Restrictions), after determining that::
 - 1. The criteria for granting a variance in Subsection (A) are met;

Yes The criteria for granting the variance are met.

- 2. The requirement for which a variance is requested prevents a reasonable, economic use of the entire property;
 - Yes The property is not accessible without building a bridge to the proposed height, which requires the fill that needs the variance.
- 3. The variance is the minimum deviation from the code requirement necessary to allow a reasonable, economic use of the entire property.
 - Yes The proposed fill is the minimum necessary to build the bridge to access the property.

<u>Staff Determination</u>: Staff determines that the findings of fact have been met. Staff recommends the following conditions:

- 1. The applicant will pay into the Riparian Zone Mitigation Fund for both the area of Zone 1 (Floodplain outside of the CWQZ) and the area of Zone 2 (Floodplain within the CWQZ) using the appropriate ratios per ECM 1.7.6.
- 2. Development of the site will be carried out as described in Exhibits 1-6, attached in the staff variance packet.

Environmental Review (DSD)

(Pamela Abee-Taulli) Date:5/20/2022

Environmental Policy Program Manager (DSD)

(Mike McDougal)

Deputy Environmental Officer (WPD)

(Liz Johnston)

Date: 05/24/2022

Date: 5/23/2022

Development Services Department Staff Recommendations Concerning Required Findings

Project Name:	8020 Parmer Lane SH 130 NW		
Ordinance Standard:	Watershed Protection Ordinance		
Variance Request:	Request to vary from 30-5-261(G) to allow floodplain		
	modification in a critical water quality zone buffer.		
	Request to vary from 30-5-261(G) to allow floodplain		

Include an explanation with each applicable finding of fact.

A. Land Use Commission variance determinations from Chapter 25-8-41 of the City Code:

1. The requirement will deprive the applicant of a privilege available to owners of similarly situated property with approximately contemporaneous development subject to similar code requirements.

Yes Two roads border the site, SH 130 and Parmer Ln. SH 130 cannot be used for access, because there is a Restriction of Access recorded for SH 130, which TxDOT will not support lifting or modifying for a full access driveway. Regarding Parmer Ln., the entirety of the Parmer Ln. frontage is located within floodplain and creek buffer. In addition, access is blocked by wetlands.

Variances have been granted in similarly restrictive circumstances to allow necessary access to a site.

The Critical Water Quality Zone variance is required because floodplain modification is necessary to offset the floodplain volume displaced by the bridge. There are no adverse impacts proposed to the floodplain elevations on adjacent properties with the proposed improvements, per the requirements of the code.

- 2. The variance:
 - a) Is not necessitated by the scale, layout, construction method, or other design decision made by the applicant, unless the design decision provides greater overall environmental protection than is achievable without the variance;

- Yes The variance is not necessitated by decisions made by the applicant. Development of the site is not possible without grading of the floodplain to offsite the volume displaced by the bridge. The bridge is necessary to access the site across the floodplain.
- b) Is the minimum deviation from the code requirement necessary to allow a reasonable use of the property;
 - Yes The proposed floodplain modification is the minimum necessary to build the bridge as required by code for safe access, with the low chord of the bridge two feet above the water surface elevation of the 100-year floodplain.
- c) Does not create a significant probability of harmful environmental consequences.
 - Yes The variance does not create a probability of harmful environmental consequences. A flood study has been completed and reviewed by the City of Austin to prove no adverse flooding impact to other properties. The bridge piers have been placed to minimize the impact to the existing wetlands, and a wetland mitigation and floodplain mitigation plan has approved by City staff.
- 3. Development with the variance will result in water quality that is at least equal to the water quality achievable without the variance.
 - Yes Water quality will be equal to or better than water quality without the variance. Existing, untreated impervious cover in the floodplain will be removed. All newly proposed impervious cover will receive full, code compliant water quality treatment.
- B. The Land Use Commission may grant a variance from a requirement of Section 25-8-422 (Water Supply Suburban Water Quality Transition Zone), Section 25-8-452 (Water Supply Rural Water Quality Transition Zone), Section 25-8-482 (Barton Springs Zone Water Quality Transition Zone), Section 25-8-368 (Restrictions on Development Impacting Lake Austin, Lady Bird Lake, and Lake Walter E. Long), or Article 7, Division 1 (Critical Water Quality Zone Restrictions), after determining that::
 - 1. The criteria for granting a variance in Subsection (A) are met;

Yes The criteria for granting the variance are met.

- 2. The requirement for which a variance is requested prevents a reasonable, economic use of the entire property;
 - Yes The property is not accessible without building a bridge to the proposed height, which necessitates the floodplain modification that needs the variance.
- 3. The variance is the minimum deviation from the code requirement necessary to allow a reasonable, economic use of the entire property.
 - Yes The proposed floodplain modification is the minimum necessary to build the bridge to access the property.

<u>Staff Determination</u>: Staff determines that the findings of fact have been met. Staff recommends the following conditions:

- 1. The applicant will pay into the Riparian Zone Mitigation Fund for both the area of Zone 1 (Floodplain outside of the CWQZ) and the area of Zone 2 (Floodplain within the CWQZ) using the appropriate ratios per ECM 1.7.6.
- 2. Development of the site will be carried out as described in Exhibits 1-6, attached in the staff variance packet.

Environmental Review (DSD)

(Pamela Abee-Taulli) Date:5/20/2022

Watershed Policy and Review (WPD) Miranda Reinhard (Miranda Reinhard)

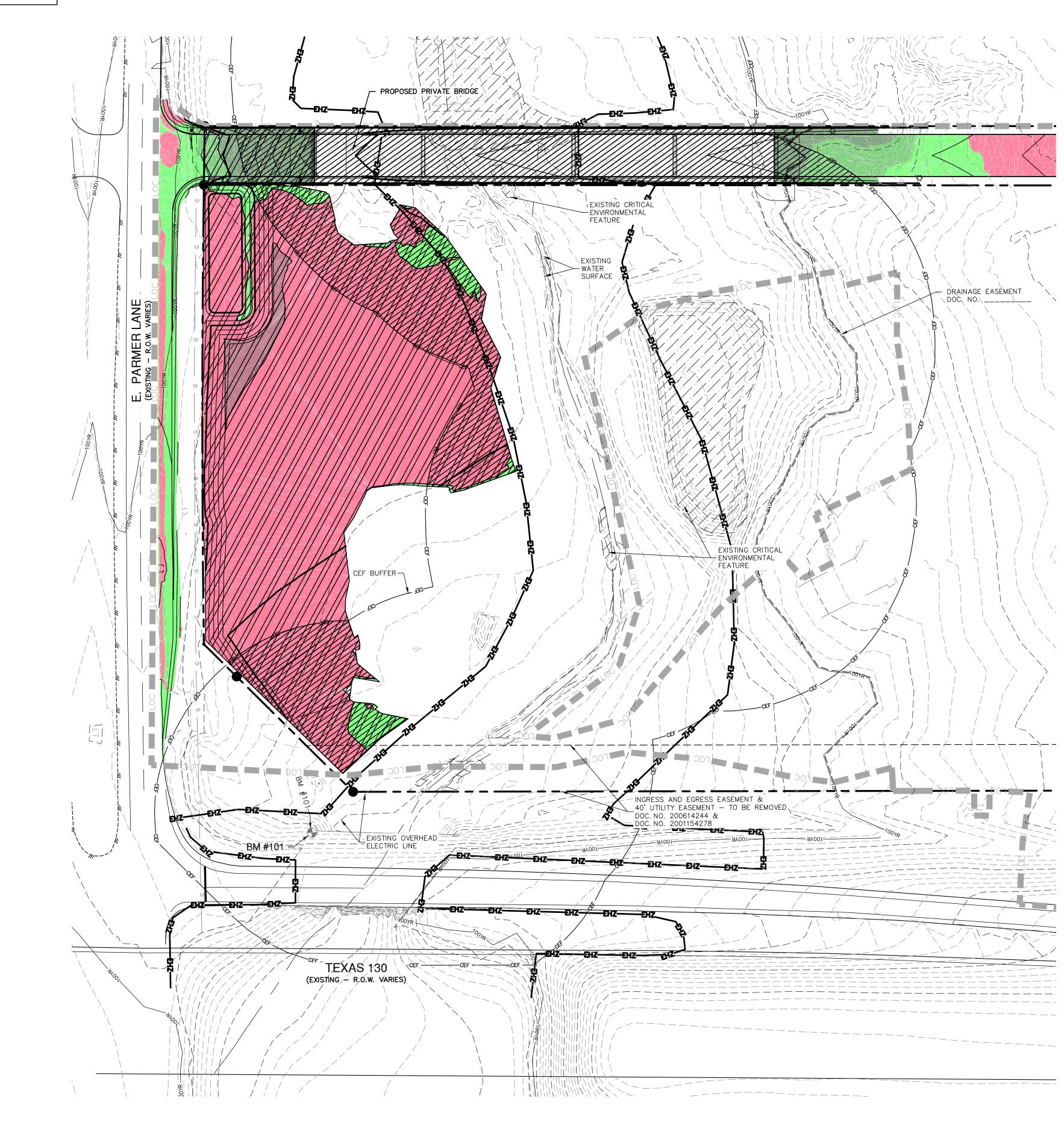
Date:

Environmental Policy Program Manager (DSD)

Mb

Date: 5/23/22

(Mike McDougal)

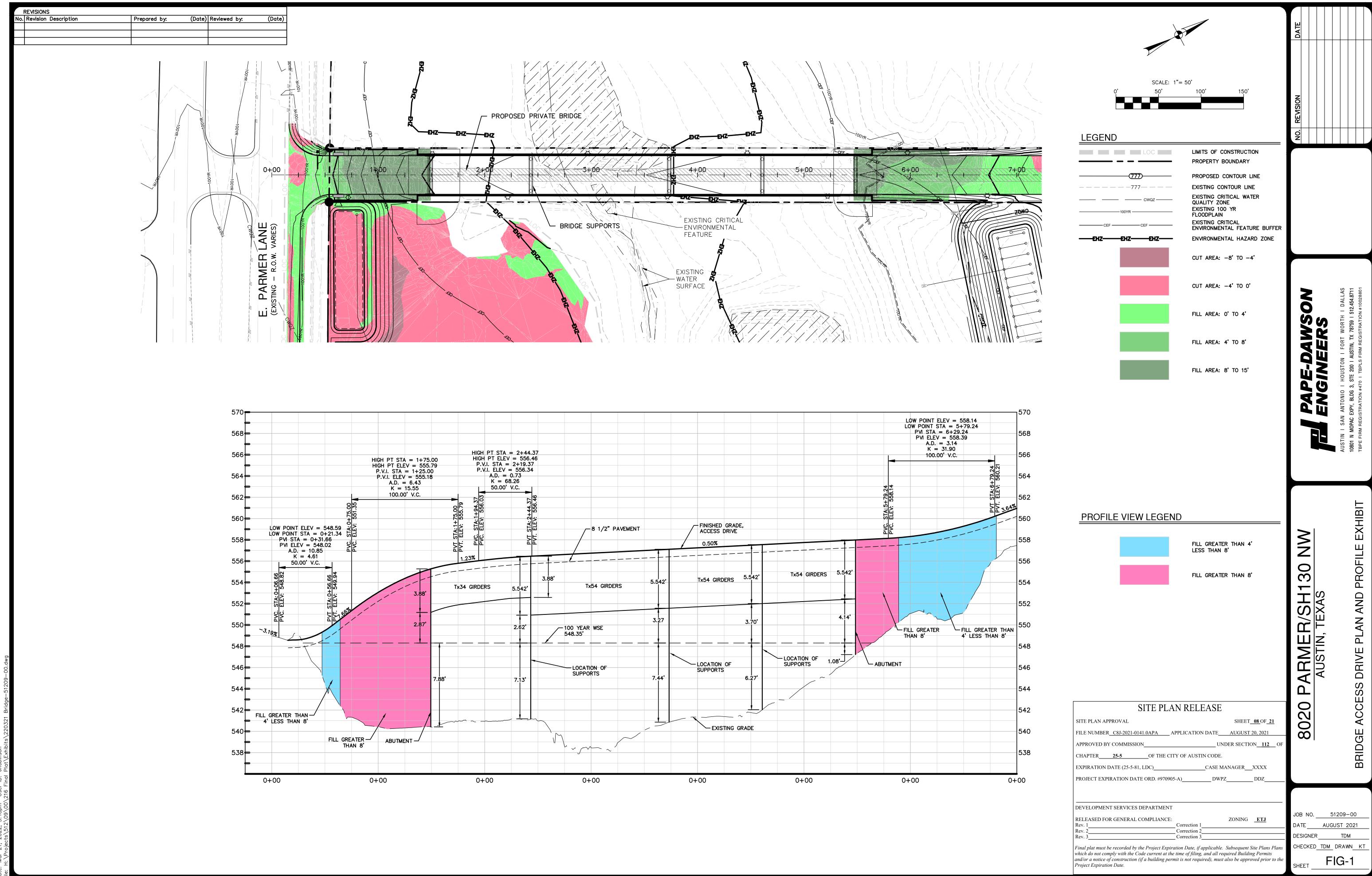

Deputy Environmental Officer (WPD)

(Liz Johnston)

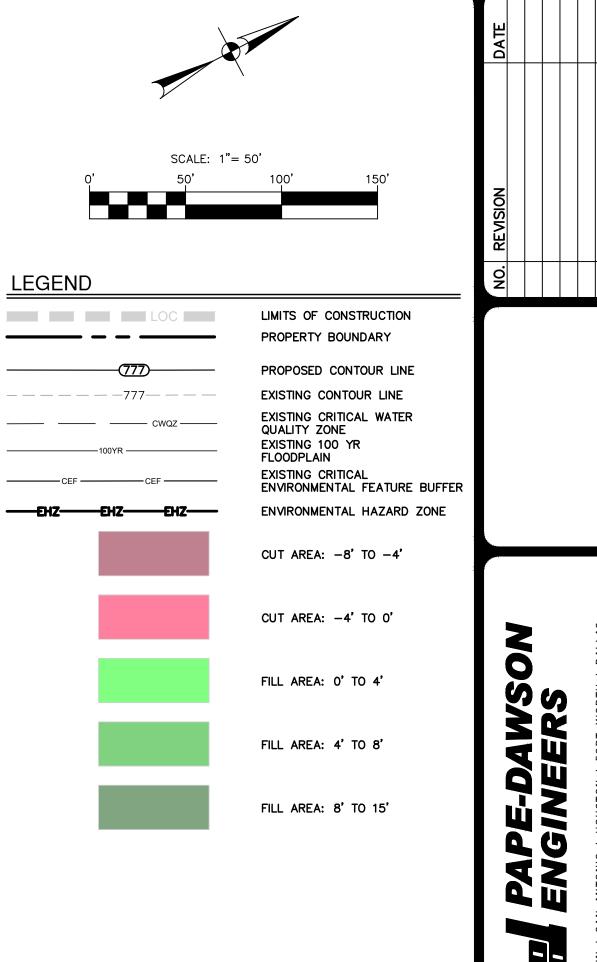
Date: 05/24/2022

EXHIBIT 1 - CUT/FILL EXHIBITS

Prepared by:	<i>1</i> - · · ·		
reputed by:	(Date)	Reviewed by:	(Date)

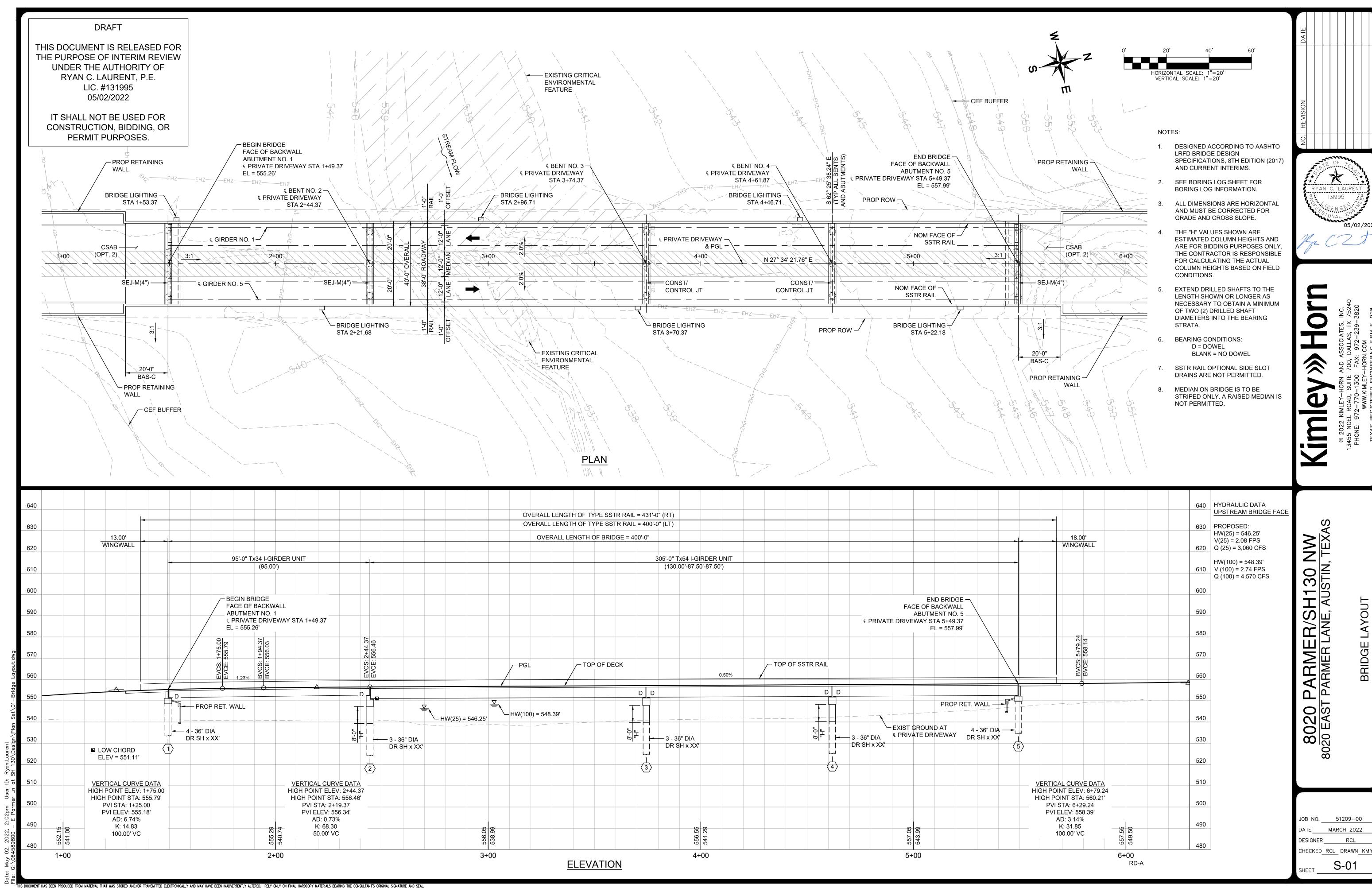


Aar 17, 2022, 4:41pm User ID: JRobinson \Projects\512\09\00\216 final plat\Civil\CF51209-00.dwg


THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.

	DATE
SCALE: 1"= 50'	NO. REVISION
LIMITS OF CONSTRUCTION PROPERTY BOUNDARY EXISTING CONTOUR LINE PROPOSED CONTOUR LINE CUT AREA: -8' TO -4' VOLUME: 24.33 CUBIC YDS CUT AREA: -4' TO 0'	SHELLY MITCHELL
FILL AREA: 0' TO 4'	03/18/2022 Shelly Mithell
VOLUME: 3,750.01 CUBIC YDS	
VOLUME: 3,593.17 CUBIC YDS FILL AREA: 8' TO 15' VOLUME 4,957.69 CUBIC YDS	SON SORTH I DALLAS 3759 I 512.454.8711 RATION #10028801
FILL AREA: 15' TO GREATER VOLUME: 386.65 CUBIC YDS	E-DAWS INEERS USTON I FORT WORTH E 200 I AUSTIN, TX 78759 I 5 TBPLS FIRM REGISTRATION
53,473.46 SF AREA GRADING DISTURBANCE WITHIN CEF BUFFER 109,540.81 SF AREA GRADING DISTURBANCE WITHIN FLOODPLAIN	ADDREEDADAWSON ADDREEDAWSON AUSTIN I SAN ANTONIO I HOUSTON I FORT WORTH I DALLAS 10801 N MOPAC EXPY, BLDG 3, STE 200 I AUSTIN, TX 78759 I 512.454.8711 TBPE FIRM REGISTRATION #470 I TBPLS FIRM REGISTRATION #10028801
SITE PLAN RELEASE	8020 PARMER/SH130 NW AUSTIN, TEXAS CUT - FILL PLAN
SITE TEAN APPROVAL SHEET_08 OF 21 FILE NUMBER_C8J-2021-0141.0APA APPLICATION DATE AUGUST 20, 2021 APPROVED BY COMMISSION UNDER SECTION 112 OF OF CHAPTER_25-5 OF THE CITY OF AUSTIN CODE. OF EXPIRATION DATE (25-5-81, LDC) CASE MANAGER_XXXX PROJECT EXPIRATION DATE ORD. #970905-A) DWPZ_DDZ_	802
DEVELOPMENT SERVICES DEPARTMENT RELEASED FOR GENERAL COMPLIANCE: ZONING <u>ETJ</u> Rev. 1 Correction 1	JOB NO. <u>51209–00</u> DATE AUGUST 2021

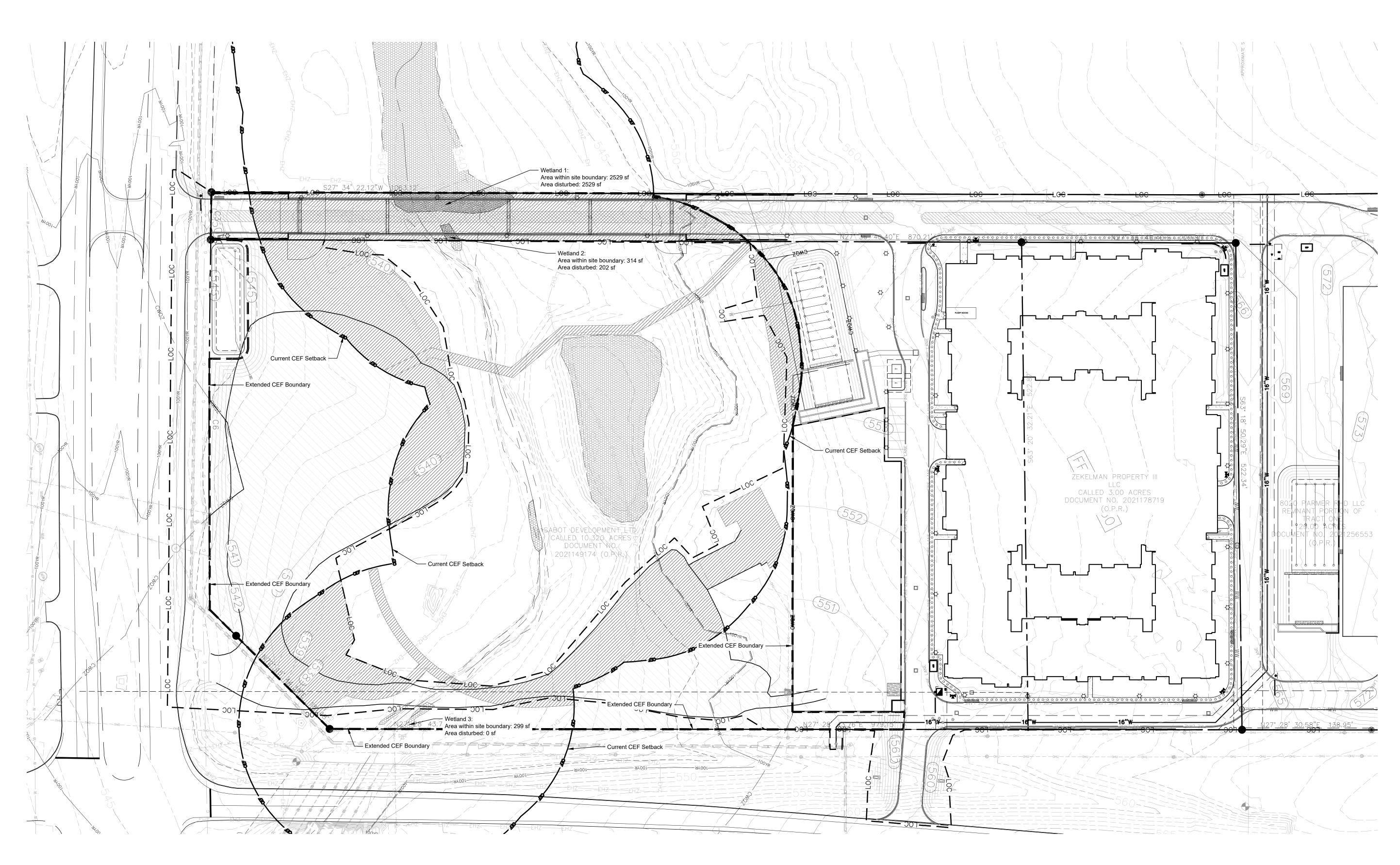
C8J-2021-0141.0APA



THIS DOCUMENT HAS BEEN PRODUCED FROM MATERIAL THAT WAS STORED AND/OR TRANSMITTED ELECTRONICALLY AND MAY HAVE BEEN INADVERTENTLY ALTERED. RELY ONLY ON FINAL HARDCOPY MATERIALS BEARING THE CONSULTANT'S ORIGINAL SIGNATURE AND SEAL.

C8J-2021-0141.0APA

EXHIBIT 2 – PRELIMINARY BRIDGE PLANS


SP-2021-XXXX

05/02/202

LAYOUT

BRIDGE

Exhibit 3 – Wetland Mitigation

CALCULATIONS

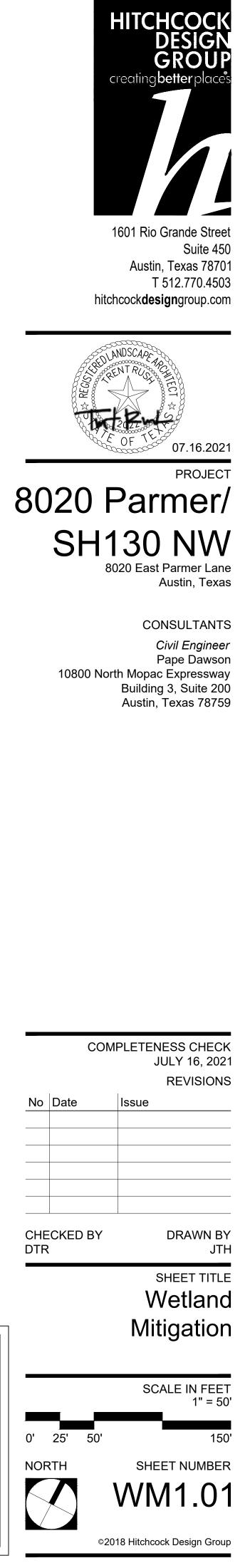
CEF Buffer Area Disturbed (Outside Wetland) - 2.05 acres Wetland Area Disturbed - 0.06 acres Total Site Area Disturbed - 2.11 acres

Note:

In the CEF mitigation and floodplain restoration area, the top 12 inches of topsoil shall be used onsite and reseeded with appropriate 604S.6, native grasses and forbs, and provide temporary irrigation in compliance with ECM P1. This is a condition of the environmental variances granted for the grading in the floodplain and fill greater than 4'.

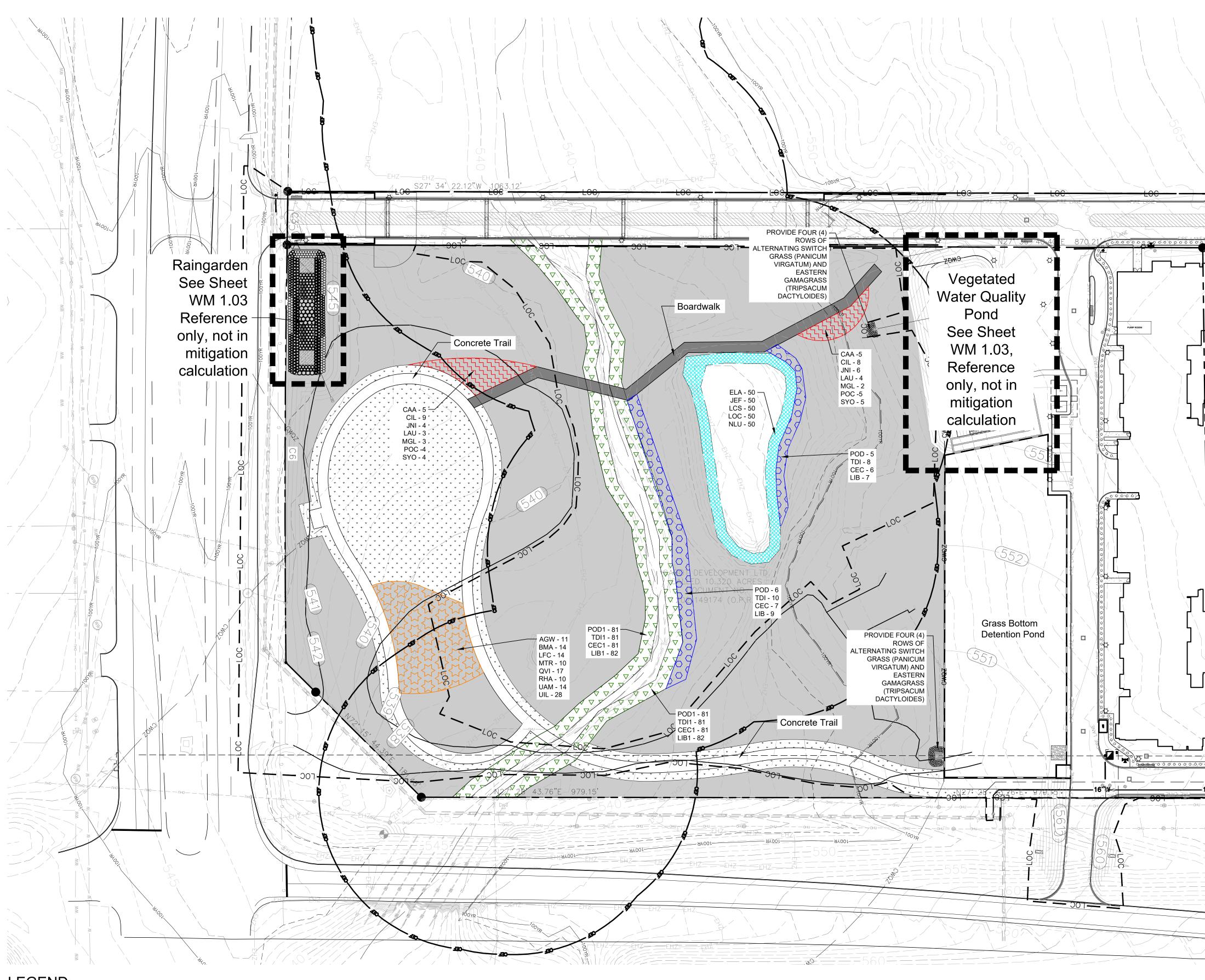
LEGEND

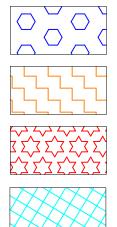
Wetland
Disturbed
Disturbed


sturbed Wetland Area - 0.06 acres


isturbed Area Outside Wetland - 2.05 acres

Extended CEF Area - 2.11 acres


Extend CEF Boundary



SITE PLAN RELEASE				
FILE NUMBER SP-2021-XXXX	APPLICATION DATE_JULY 16, 2021			
APPROVED BY COMMISSION OF	NUNDER SECTIONOF			
CHAPTER 25-5 OF THE CIT	TY OF AUSTIN CODE.			
EXPIRATION DATE (25-5-81,LDC	C)CASE MANAGERXXXX			
PROJECT EXPIRATION DATE (O	DRD.#970905-A)DWPZDDZ			
Development Services Department				
RELEASED FOR GENERAL COM	IPLIANCE: ZONING ETJ			
Rev. 1	Correction 1			
Rev. 2	Correction 2			
Rev. 3	Correction 3			
Final plat must be recorded by the Project Expiration Date, if applicable. Subsequent Site Plans which do not comply with the Code current at the time of filing, and all required Building Permits and/or a notice of construction (if a building permit is not required), must also be approved prior to the Project Expiration Date.				

LEGEND

Mitigation Revegetation - High Water Use Tree & Shrub Mix - 0.18 acres

Mitigation Revegetation - Moderate Water Use Tree & Shrub Mix - 0.07 acres

Mitigation Revegetation - Light Water Use Tree & Shrub Mix - 0.17 acres

Mitigation Revegetation - Aquatic Plant Mix - 0.12 acres

Total Mitigation Revegetation Area: 0.54 acres

\(\nabla \nabla \nabl

Non Mitigation Revegetation - Upland Species Seed Mix, Full Sun Area - 5.37 acres

Non Mitigation Revegetation - Solid Sod - 5.20 acres

	List			Spacing	~
Code	Botanical Name	Common Name	Size	(min.)	Quanti
	Trees, High Water Use, 1-gallon spe		I CAL	40"	11
POD TDI	Populus deltoides Taxodium distichum	Eastern Cottonwood Common Baldcypress	5 GAL 5 GAL	48" 48"	11 18
	Taxodidiff distiction	common balacypress	JUNE	Total	29
Shade 1	Trees, Moderate Water Use, 1-gallo	n specimens			
CIL*	Carya illinoensis	Pecan	5 GAL	48"	12
JNI*	Juglans nigra	Black Walnut	5 GAL	48"	10
POC*	Platanus occidentalis	American Sycamore	5 GAL	48" Total	9 31
Shade T	Trees, Light Water Use, 1-gallon spe	ecimens		Total	
QVI*	Quercus virginiana	Live Oak	5 GAL	48"	17
UAM*	Ulmus americana	American Elm	5 GAL	48"	14
UIL*	Ulmus crassifolia	Cedar Elm	5 GAL	48"	28
			Totalsk	Total nade Tree Count	59 119
			10(a) 51	lade free count	119
Shrubs,	, High Water Use, 1-gallon specimens				
CEC	Cephalanthus occidentalis	Buttonbush	5 GAL	48"	13
LIB	Lindera benzoin	Northern Spicebush	5 GAL	24"	16
				Total	29
	, Moderate Water Use, 1-gallon specin		I CONT	401	
CAA* LAU*	Callicarpa americana Lantana urticoides	American Beautyberry Texas lantana	5 GAL 5 GAL	48"	10 7
LAU* MGL*	Lantana urticoides Malpighia glabra	Texas Tantana Barbados Cherry	5 GAL	<u>48</u> 48''	5
SYO*	Symphoricarpos orbiculatus	· · · · ·	5 GAL	36"	9
				Total	31
Shrubs,	, Light Water Use, 1-gallon specimens				
AGW*	Ageratina havanensis	White Mistflower	5 GAL	48"	11
BMA*	Buddleia marrubifolia	Wooly Butterfly Bush	5 GAL	48" 72"	14
LFC* MTR*	Leucophyllum frutescens Mahonia trifoliolata	Texas Sage Agarita	5 GAL 5 GAL	48"	14 10
RHA*		Fragrant Sumac	5 GAL	72"	10
• To be p	lanted outside of saturated zor			Total	59
			To	atal Shrub Count	119
Code	Botanical Name	Common Name	Size	Spacing (min.)	Quant
Non Mi	tigation Revegetation - Ri	harian Area 1-callon spec	imens	(11111.)	
POD1	Populus deltoides	Eastern Cottonwood	1 GAL	24"	162
TDI1	Taxodium distichum	Common Baldcypress	1 GAL	24"	162
CEC1	Cephalanthus occidentalis	Buttonbush	1 GAL	24"	162
LIB1	Lindera benzoin	Northern Spicebush	1 GAL	24"	164
			L	Total	650
Code	Botanical Name	Common Name	Size	Spacing	Quant
			5120	(min.)	Quunt
	C Plant List, 1-gallon specimens w			o. 1"	5.0
ELA JEF	Equisetum laevigatum Juncus effusus	Scouring Rush Soft Rush	1 GAL 1 GAL	24" 24"	50 50
LCS	Lobelia cardinalis	Cardinal Flower	1 GAL	24"	50
LOC	Ludwiga octovalvis	Shrubby Water Primrose		24"	50
NLU	Nelumbo lutea	American Lotus	1 GAL	24"	50
			L	Total	250
				Spacing	
Code	Botanical Name	Common Name	Size	(min.)	Quant
Bunch	Grass at Stilling Basin				
	Tripsacum dactyloides	Eastern Gamagrass	3 GAL	18"	65
	Panicum virgatum	Switchgrass	3 GAL	18"	66
Marganetic Marganetic	• • 10 Hold V0 ·		L	Total	131
	etland Mitigation				
)isturbance	2.11 AC			
winnmun	n CEF Extention Area Required ention Area Provided	2.11 AC 2.11 AC			
EFF Fyte	Trees (2/100 SF)	92,038 (/100 SF /2)	460		
		Provided Trees	119		
Required	Shrubs(2/100 SF)	92,038 (/100 SF /2)			
Required	l Shrubs(2/100 SF)	92,038 (/100 SF /2) Provided Shrubs	119		
Required Required		Provided Shrubs			
Required Required	ed trees and shrubs are based o	Provided Shrubs n 1 gallon material. Prov	ided		
Required Required Require rees and		Provided Shrubs n 1 gallon material. Prov 7 of 609S.5 - Native Seed	ided ing and		

1601 Rio Grande Street Suite 450 Austin, Texas 78701 T 512.770.4503 hitchcock**design**group.com

HITCHCOCK DESIGN

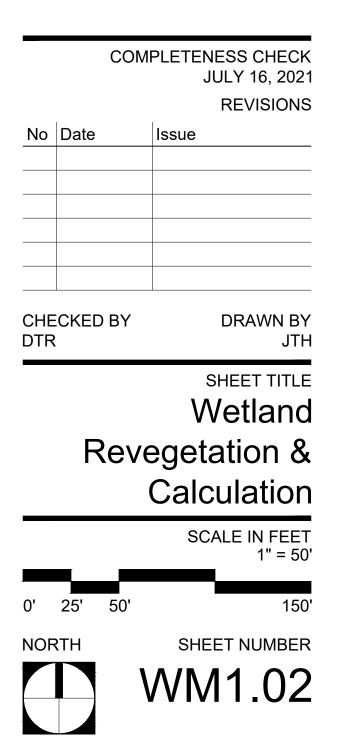
reating**better**pla

GROUP

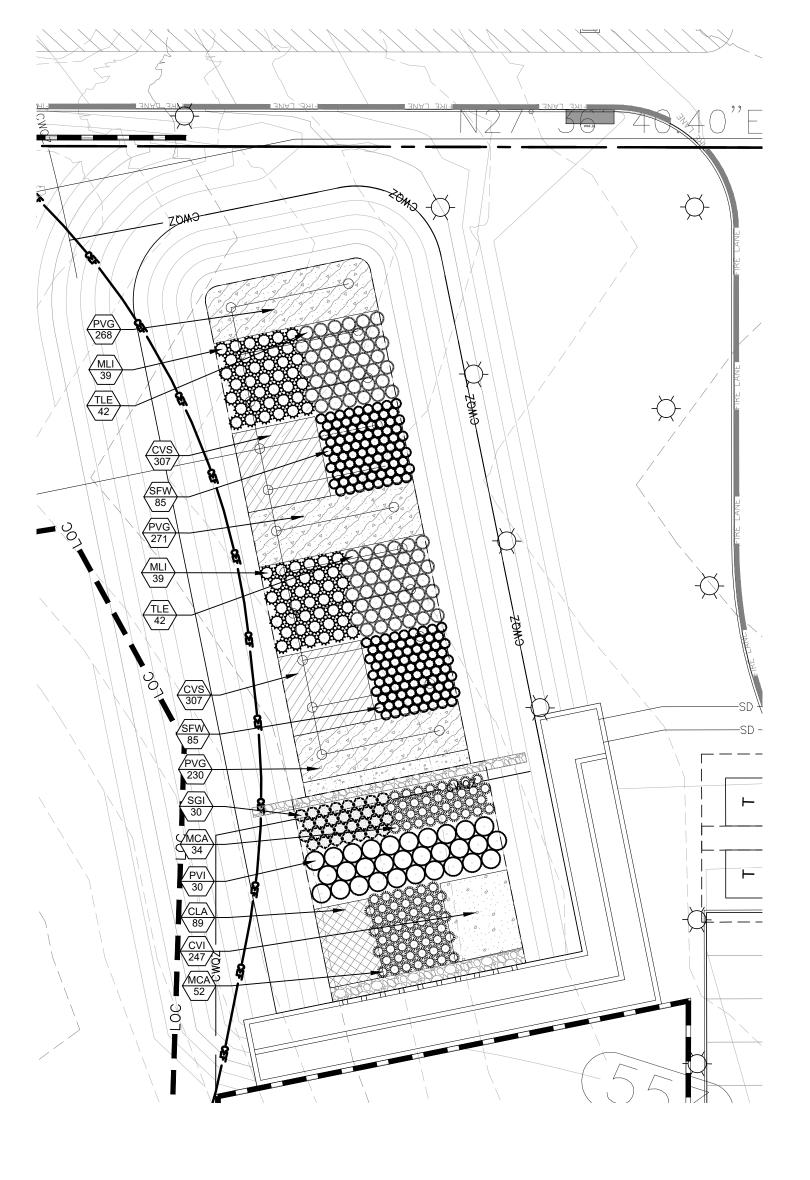
PROJECT

8020 Parmer/ SH130 NW

8020 East Parmer Lane Austin, Texas

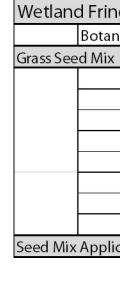

CONSULTANTS *Civil Engineer* Pape Dawson 10800 North Mopac Expressway Building 3, Suite 200 Austin, Texas 78759

In the CEF mitigation and floodplain restoration area, the top 12 inches of topsoil shall be used onsite and reseeded with appropriate 604S.6, native grasses and forbs, and provide temporary irrigation in compliance with ECM P1. This is a condition of the environmental variances granted for the grading in the floodplain and fill greater than 4'.



SITE PLA	N RELEA	ASE	
FILE NUMBER <u>SP-2021-XXXX</u> APP	LICATION DA	TE_JULY 16,	2021
APPROVED BY COMMISSION ON	UN	DER SECTIO	OFOF
CHAPTER 25-5 OF THE CITY OF	AUSTIN CODE		
EXPIRATION DATE (25-5-81,LDC)	CASE M	ANAGER	XXXX
PROJECT EXPIRATION DATE (ORD.#9	70905-A)	DWPZ	DDZ
Development Services Department			
RELEASED FOR GENERAL COMPLIAN	ICE:	ZONING	ETJ
Rev. 1C	orrection 1		
Rev. 2C	orrection 2		
Rev. 3C	orrection 3		
Final plat must be recorded by the Project E which do not comply with the Code current of Permits and/or a notice of construction (if a	t the time of filin	g, and all requ	ired Building

approved prior to the Project Expiration Date.


©2018 Hitchcock Design Group

VEGETATED WATER QUALITY POND 1" = 20'-0"

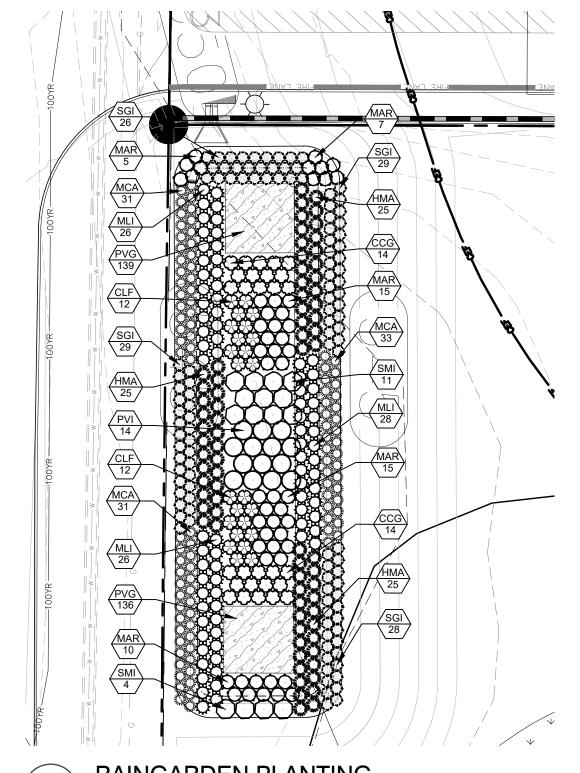
	Botanical Name	Common Name	Application Rate (lbs/ac)	Total Application (lbs/ac)
Grass See	ed Mix		·	
	Aristida purpurea	Purple Threeawn	4	21.48
	Bouteloua curtipendula	Sideoats Grama	7	37.59
	Bouteloua gracilis	Blue Grama	10	53.70
	Leptochloa dubia	Green Sprangletop	2	10.74
	Sporobolus cryptandrus	Sand Dropseed	1	5.37
		Total Grass Seed Mix	24	128.88
Forb See	d Mix			
	Dalea purpurea	Purple Prairie Clover	4	21.48
	Oenethera speciosa	Pink Evening Primrose	1	5.37
	Ratibida columnaris	Mexican Hat	2	10.74
	Thelesperma filifolium	Greenthread	6	32.22
		Total Forb Seed Mix	13	69.81
Seed Mix	Application Rate			
			Recommended	Provided
		Grass Seed Mix	23.5	128.88
		Forb Seed Mix	11.5	69.81
		Total Full Sun Seed Mix	35	198.69

25

PVI 14

CLF 12 MCA 31

MLI 26


PVG 136

MAR 10

 $\frac{SM}{4}$

1" = 20'-0"

2

nge Mix Total: 0.35 acres						
inical Name	Common Name	plication Rate (lbs/	Total Application (lbs/ac)			
X						
	Clasping Coneflower	1.5	0.53			
	Cutleaf Daisy	1.5	0.53			
	Plains Coreopsis	1.5	0.53			
	Illinois Bundleflower	1.5	0.53			
	Black-Eyed Susan	1.5	0.53			
	Pink Evening Primrose	1.5	0.53			
	Meximilian Sunflower	1.5	0.53			
	American Basketflower	1.5	0.53			
lication Rate		12	4.2			

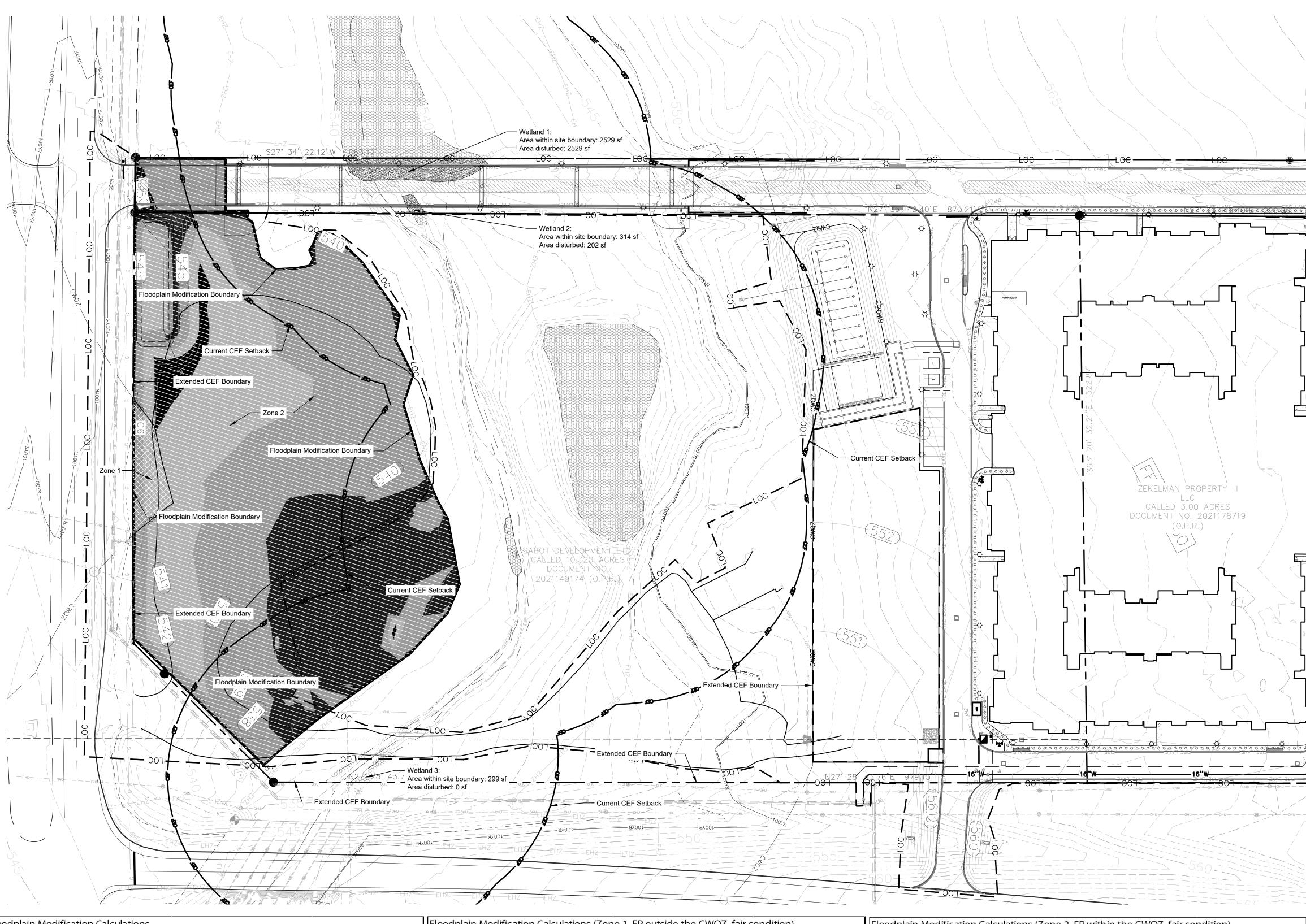
SHRUBS	BOTANICAL / COMMON NAME	CONTAINER	HEIGHT		QTY
CLF	Chasmanthium latifolium Northern Sea Oats	5 gal			24
CCG	Conoclinium greggii Gregg`s Mistflower	5 gal			28
HMA	Helianthus maximiliani Maximilian Sunflower	5 Gal.			75
MAR	Malvaviscus drummondii Turk`s Cap	5 gal			52
MCA	Muhlenbergia capillaris Gulf Muhly	3 Gal	10-12"		181
MLI	Muhlenbergia lindheimeri `Big` Big Muhly	5 gal			158
PVI	Physostegia virginiana Obedient Plant	5 Gal.			44
SMI	Sabal minor Dwarf Palmetto	5 gal			15
SFW	Salvia farinacea Mealy Sage	5 Gal.			170
SGI	Salvia greggii Autumn Sage	5 gal			142
TLE	Tagetes lemmonii Copper Canyon Daisy	5 Gal.			84
		001741155		0540040	
GROUND COVERS	BOTANICAL / COMMON NAME	CONTAINER		SPACING	
CVI	Callirhoe involucrata Purple Poppymallow	1 gal		12" o.c.	238 sf
CVS	Calyptocarpus vialis Horseherb	1 gal		12" o.c.	590 sf
CLA	Coreopsis lanceolata Lanceleaf Tickseed	1 gal		18" o.c.	191 sf
PVG	Panicum virgatum Switch Grass	1 gal		15" o.c.	1,565 s

1601 Rio Grande Street Suite 450 Austin, Texas 78701 T 512.770.4503 hitchcock**design**group.com

PROJECT

8020 Parmer/ **SH130 NW** 8020 East Parmer Lane Austin, Texas

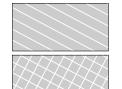
> CONSULTANTS *Civil Engineer* Pape Dawson 10800 North Mopac Expressway Building 3, Suite 200 Austin, Texas 78759


	_		
		COM	IPLETENESS CHECK JULY 16, 2021
			REVISIONS
	No	Date	Issue
	CHE	CKED BY	DRAWN BY
	DTR		JTH
		PI	anting Plan
OF	_		SCALE IN FEET 1" = 50'
DZ			1 = 30
	0'	25' 50'	150'
	NOF	ктн	SHEET NUMBER
t Site Plans ding so be			WM1.03
		©20	18 Hitchcock Design Group

SITE PLAN RELEASE FILE NUMBER <u>SP-2021-XXXX</u> APPLICATION DATE JULY 16, 2021 APPROVED BY COMMISSION ON _____UNDER SECTION _____ CHAPTER <u>25-5</u> OF THE CITY OF AUSTIN CODE. EXPIRATION DATE (25-5-81,LDC) CASE MANAGER XXXX PROJECT EXPIRATION DATE (ORD.#970905-A) ____ DWPZ ___ DDZ Development Services Department RELEASED FOR GENERAL COMPLIANCE: ZONING ETJ Rev. 1 Correction 1 Rev. 2 _Correction 2_ Rev. 3 Correction 3 Final plat must be recorded by the Project Expiration Date, if applicable. Subsequent Si which do not comply with the Code current at the time of filing, and all required Buildin Permits and/or a notice of construction (if a building permit is not required), must also b approved prior to the Project Expiration Date.

EXHIBIT 4 – FLOODPLAIN

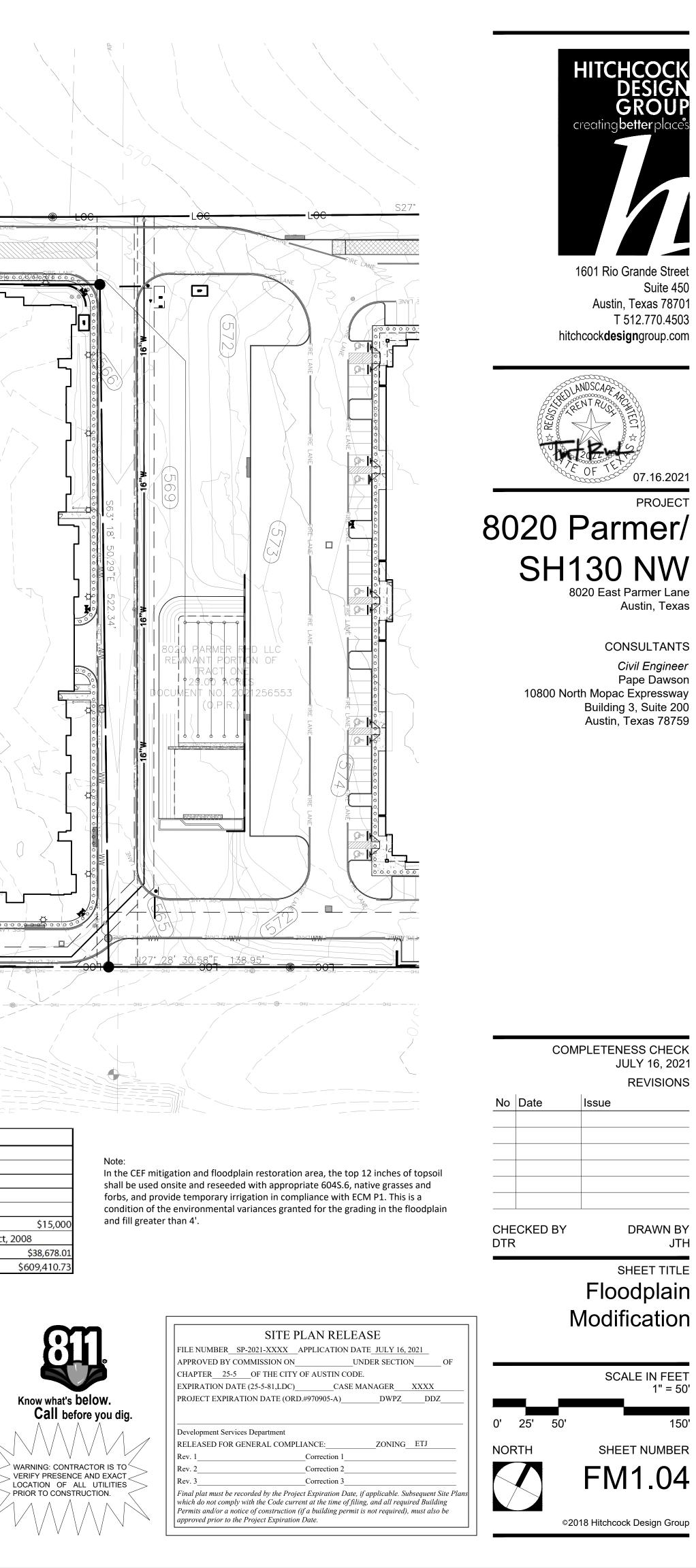
MODIFICATION


Floodplain Modification Calculations			Floodplain Modification Calculations	(Zone 1, FP outside the CWQZ, fair condition)	Floodplain Modification Calculations (Zone 2, FP within the CWQZ, fair con	dition)
Area of Modification	2.69	AC	Area of Modification	0.064 AC	Area of Modification	2.626 A	C
Floodplain Mitigation Land Required	2.69	AC	Floodplain Mitigation Land Required	0.064 AC	Floodplain Mitigation Land Required	2.626 A	C
Floodplain Mitigation Land Provided	0.00	AC	Floodplain Mitigation Land Provided	0.000 AC	Floodplain Mitigation Land Provided	0.000 A	С
Restoration Ratio	1:3 for Zone 1, 1:6 for Zone 2		Restoration Ratio	1:3	Restoration Ratio	1:6	
Floodplain Mitigation by Payment	0.192 + 15.756 = 15.948	AC	Floodplain Mitigation by Payment	0.192 AC	Floodplain Mitigation by Payment	15.756 A	С
Base Fee		\$15,000	Base Fee	\$15,00	0 Base Fee		\$15,000
Annual Adjustment Factor	7%	Beginning Oct, 2008	Annual Adjustment Factor	7% Beginning Oct, 2008	Annual Adjustment Factor	7% B	eginning Oct, 2008
Adjusted Fee	15000*((100%+7%)^(2022-2008))	\$38,678.01	Adjusted Fee	15000*((100%+7%)^(2022-2008)) \$38,678.0	1 Adjusted Fee	15000*((100%+7%)^(2022-2008))	\$38,678.01
Total Fee	Mitigation by Payment x Adjusted Fee =	\$616,836.91	Total Fee	Mitigation by Payment x Adjusted Fee = \$7,426.1	8 Total Fee	Mitigation by Payment x Adjusted Fee =	\$609,410.73

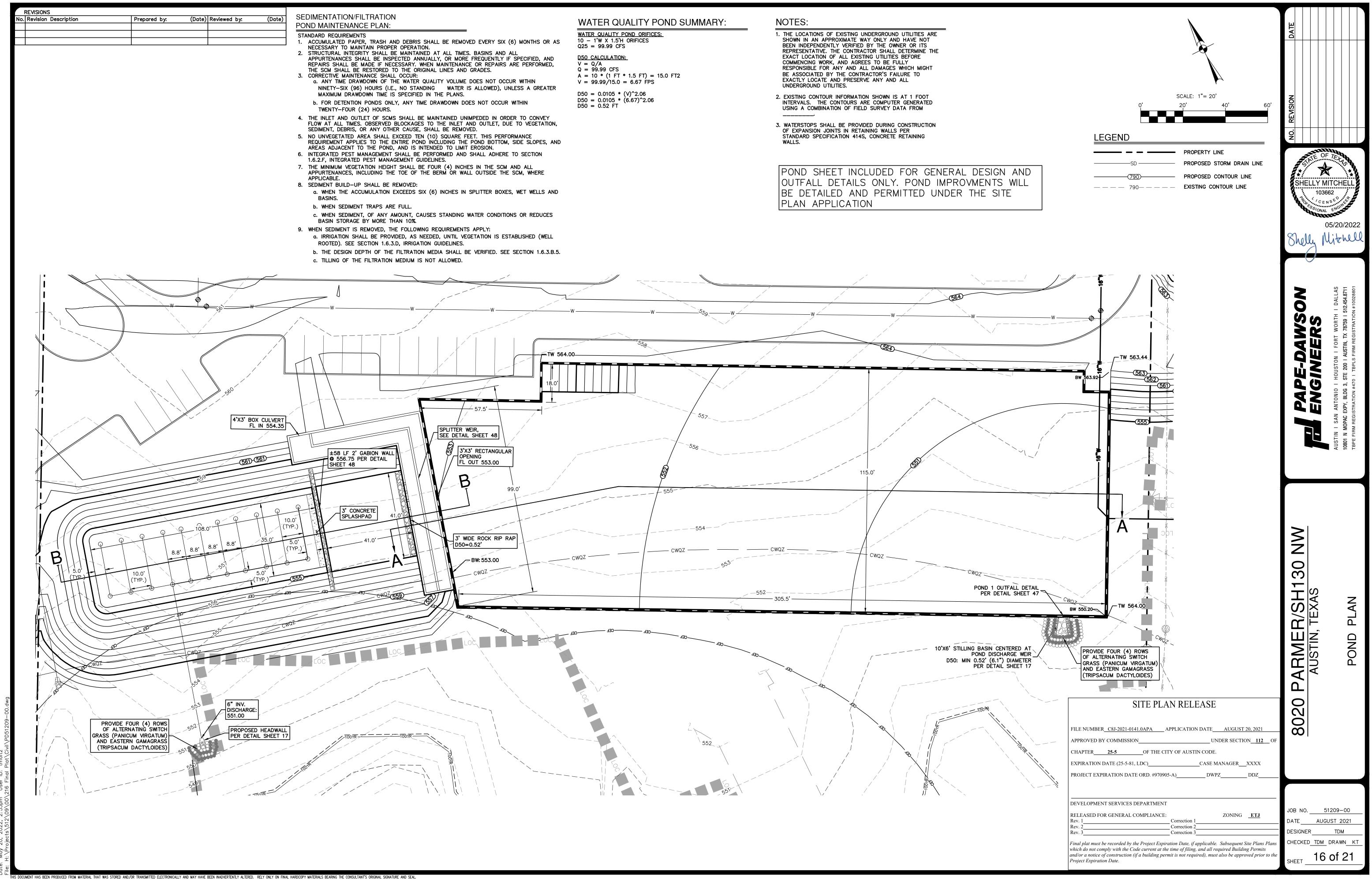
LEGEND

Floodplain Modification Boundary, Area: 2.69 ac

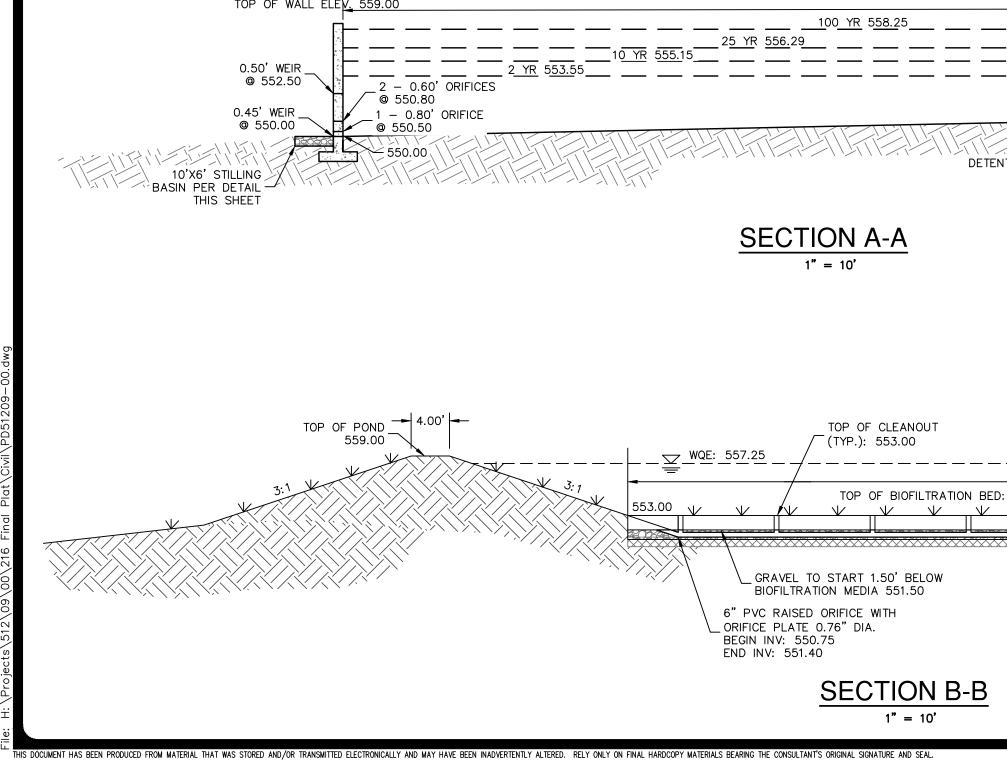
- CEF Current CEF Setback

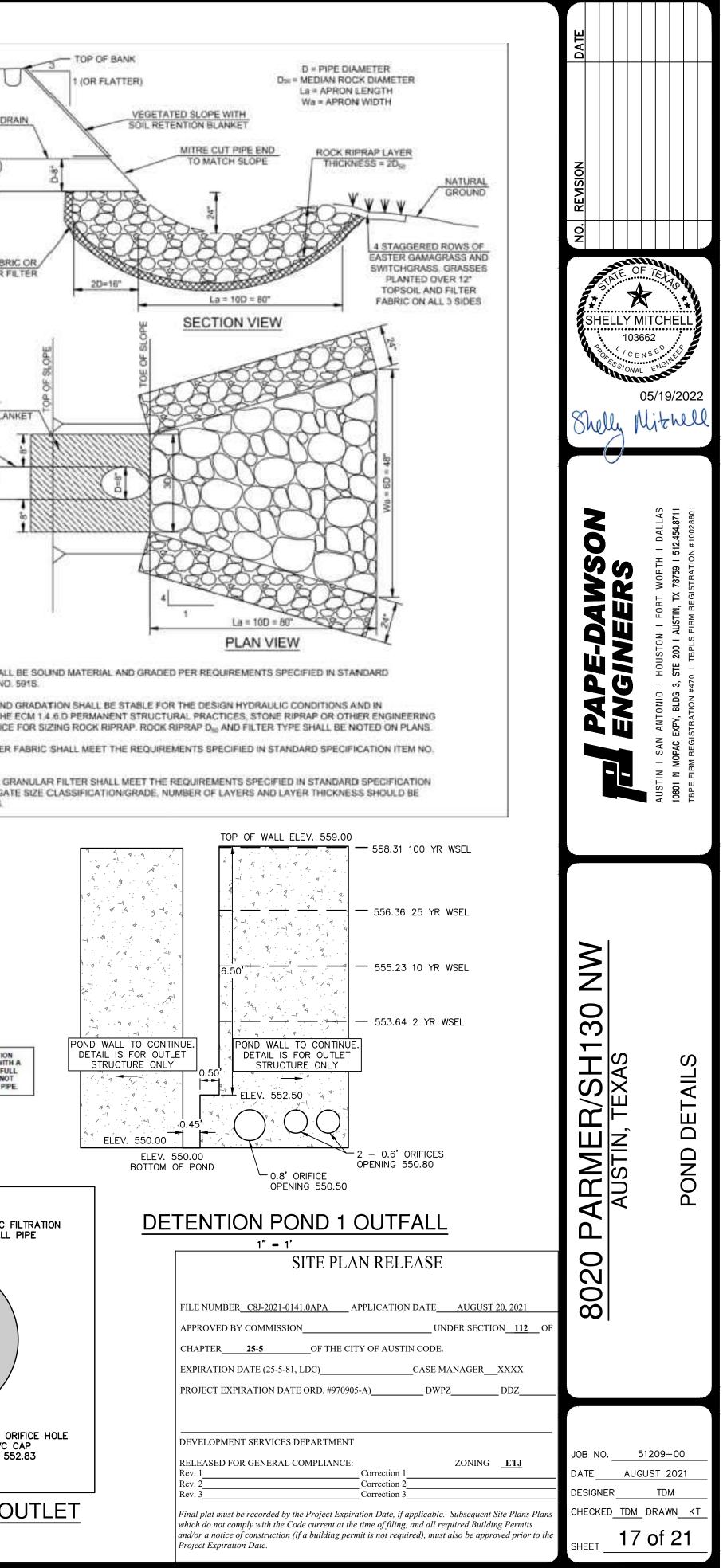

Extend CEF Boundary

Zone 1 (Floodplain outside the CWQZ)


Zone 2 (Floodplain within the CWQZ)

Page 18 of 46


EXHIBIT 5 – PRELIMINARY


POND PLANS

C8J-2021-0141.0APA

or Partial Sedimentation Pond Volume (min of 20% of WQV) □ or Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) □ or Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) □ tration Pond Volume □ ater Quality Elevation □	MITS	IONS I <	Sedimentation Pond Stage (ft msl) (Elevation) 553.00 554.00 555.00 555.00 556.00 557.25 558.00 559.00 557.25 558.00 559.00 Stage (ft msl) (Elevation) Stage (ft msl) (Elevation) 553.00 554.00 557.25 558.00 557.25 558.00 559.00	Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.25 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Cumulative Pond Depth (ft) 0.00 1.00 2.00 3.00 4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00 3.00	Area (sf) 0 1,763 2,021 2,279 2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536 5,323	Volume (cf) 0 588 1,891 2,149 2,407 642 2,023 2,923 2,923 Volume (cf) 0.00 4,150	Volume (cf) 0.00	Notes WQV TOP OF POND Combined Pond Volumes (cf) 0.00	Notes		
FULL OR PARTIAL BIOFILTRATION PONI FOR DEVELOPMENT PERI Parmer MF Sed/Fil Pond 1 - South, Parmer Method Source Parmer Method Source Partial Filtration Pont CALCULATIONS Partial Filtration Pond Area , Af = WQV/(7 + 2.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) Partion Pond Volume <td colsp<="" th=""><th>SMITS 51209-00 11.94 ac. 36.60% ac. 0.666 in Required ac. 99.99 cfs 135.9 cfs 28,866 cf cf cf 6,161.22 cf sf sf</th><th>Provided 102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf</th><th>(Elevation) 553.00 554.00 555.00 555.00 556.00 557.00 557.25 558.00 559.00 559.00 558.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 553.00 553.00 554.00 555.00 555.00 555.00 557.25 558.00</th><th>(ft) 0.00 1.00 1.00 1.00 0.25 0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00</th><th>(ft) 0.00 1.00 2.00 3.00 4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00</th><th>(sf) 0 1,763 2,021 2,279 2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536</th><th>(cf) 0 588 1,891 2,149 2,407 642 2,023 2,923 Volume (cf) 0.00</th><th>Volume (cf) 0 588 2,478 4,627 7,034 7,676 9,699 12,622 Cumulative Volume (cf) 0.00</th><th>WQV TOP OF POND Combined Pond Volumes (cf) 0.00</th><th>Notes</th><th></th></td>	<th>SMITS 51209-00 11.94 ac. 36.60% ac. 0.666 in Required ac. 99.99 cfs 135.9 cfs 28,866 cf cf cf 6,161.22 cf sf sf</th> <th>Provided 102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf</th> <th>(Elevation) 553.00 554.00 555.00 555.00 556.00 557.00 557.25 558.00 559.00 559.00 558.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 553.00 553.00 554.00 555.00 555.00 555.00 557.25 558.00</th> <th>(ft) 0.00 1.00 1.00 1.00 0.25 0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00</th> <th>(ft) 0.00 1.00 2.00 3.00 4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00</th> <th>(sf) 0 1,763 2,021 2,279 2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536</th> <th>(cf) 0 588 1,891 2,149 2,407 642 2,023 2,923 Volume (cf) 0.00</th> <th>Volume (cf) 0 588 2,478 4,627 7,034 7,676 9,699 12,622 Cumulative Volume (cf) 0.00</th> <th>WQV TOP OF POND Combined Pond Volumes (cf) 0.00</th> <th>Notes</th> <th></th>	SMITS 51209-00 11.94 ac. 36.60% ac. 0.666 in Required ac. 99.99 cfs 135.9 cfs 28,866 cf cf cf 6,161.22 cf sf sf	Provided 102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	(Elevation) 553.00 554.00 555.00 555.00 556.00 557.00 557.25 558.00 559.00 559.00 558.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 553.00 553.00 554.00 555.00 555.00 555.00 557.25 558.00	(ft) 0.00 1.00 1.00 1.00 0.25 0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00	(ft) 0.00 1.00 2.00 3.00 4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00	(sf) 0 1,763 2,021 2,279 2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536	(cf) 0 588 1,891 2,149 2,407 642 2,023 2,923 Volume (cf) 0.00	Volume (cf) 0 588 2,478 4,627 7,034 7,676 9,699 12,622 Cumulative Volume (cf) 0.00	WQV TOP OF POND Combined Pond Volumes (cf) 0.00	Notes	
FOR DEVELOPMENT PERI Parmer MF Sed/Fil Pond 1 - South, RAINAGE AREA DATA: ainage area to control (DA) ainage area Impervious Cover apture Depth (CD) = (0.5+(IC-20)/100) a ATER QUALITY CONTROL CALCULATIONS ater Quality Control is to be BIOFILTRATON -year peak flow rate to control (Q25) 0-year peak flow rate to control (Q100) ater Quality Volume (WQV=CD*DA*3630) @ WQE aximum Ponding Depth above Sand Bed (H) adimentation Pond Area r Full Sedimentation Pond Volume (min. of WQV) r Partial Sedimentation Pond Volume (min of 20% of WQV) r Partial Filtration Pond Area , Af = WQV/(7 + 2.33*H) r Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) ater Quality Elevation	SMITS 51209-00 11.94 ac. 36.60% ac. 0.666 in Required ac. 99.99 cfs 135.9 cfs 28,866 cf cf cf 6,161.22 cf sf sf	Provided 102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	554.00 555.00 555.00 556.00 557.25 558.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 553.00 553.00 554.00 555.00 555.00 557.25 558.00	1.00 1.00 1.00 0.25 0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00	1.00 2.00 3.00 4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00	1,763 2,021 2,279 2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536	588 1,891 2,149 2,407 642 2,023 2,923 Volume (cf) 0.00	588 2,478 4,627 7,034 7,676 9,699 12,622 Cumulative Volume (cf) 0.00	TOP OF POND Combined Pond Volumes (cf) 0.00	Notes		
RAINAGE AREA DATA: ainage area to control (DA) ainage area Impervious Cover apture Depth (CD) = (0.5+(IC-20)/100) ATER QUALITY CONTROL CALCULATIONS ater Quality Control is to be BIOFILTRATON -year peak flow rate to control (Q25) 0-year peak flow rate to control (Q100) ater Quality Volume (WQV=CD*DA*3630) @ WQE aximum Ponding Depth above Sand Bed (H) adimentation Pond Area r Full Sedimentation Pond Volume (min. of WQV) r Partial Sedimentation Pond Area , Af = WQV/(7 + 2.33*H) r Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) ater Quality Elevation	11.94 ac. 36.60% in 0.666 in Required in 99.99 cfs 135.9 cfs 28,866 cf 6,161.22 cf sf sf	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	555.00 556.00 557.00 557.25 558.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 559.00 553.00 553.00 554.00 555.00 557.00 557.25 558.00	1.00 1.00 1.00 0.25 0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00	2.00 3.00 4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00	2,021 2,279 2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536	1,891 2,149 2,407 642 2,023 2,923 Volume (cf) 0.00	2,478 4,627 7,034 7,676 9,699 12,622 Cumulative Volume (cf) 0.00	TOP OF POND Combined Pond Volumes (cf) 0.00	Notes		
ainage area to control (DA) ainage area Impervious Cover pture Depth (CD) = (0.5+(IC-20)/100) ATER QUALITY CONTROL CALCULATIONS e Water Quality Control is to be BIOFILTRATON e Water Quality Control is to be BIOFILTRATON e Water Quality Control (Q25) D-year peak flow rate to control (Q100) ater Quality Volume (WQV=CD*DA*3630) @ WQE ximum Ponding Depth above Sand Bed (H) dimentation Pond Area r Full Sedimentation Pond Volume (min. of WQV) r Partial Sedimentation Pond Volume (min of 20% of WQV) r Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) r Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) ration Pond Volume	36.60% in 0.666 in Required 1 99.99 cfs 135.9 cfs 28,866 cf 6 cf 6 cf 7 cf 8 cf 8 cf 5 cf 6 cf 5 cf	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	557.00 557.25 558.00 559.00 Filtration Pond Stage (ft msl) (Elevation) 553.00 554.00 555.00 555.00 555.00 555.00 557.25 558.00	1.00 0.25 0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00	4.00 4.25 5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00	2,537 2,602 2,795 3,053 Area (sf) 3,776 4,536	2,407 642 2,023 2,923 Volume (cf) 0.00	7,034 7,676 9,699 12,622 Cumulative Volume (cf) 0.00	TOP OF POND Combined Pond Volumes (cf) 0.00	Notes		
ainage area to control (DA) ainage area Impervious Cover apture Depth (CD) = (0.5+(IC-20)/100) ATER QUALITY CONTROL CALCULATIONS e Water Quality Control is to be BIOFILTRATON -year peak flow rate to control (Q25) 0-year peak flow rate to control (Q100) ater Quality Volume (WQV=CD*DA*3630) @ WQE aximum Ponding Depth above Sand Bed (H) dimentation Pond Area r Full Sedimentation Pond Volume (min. of WQV) r Partial Sedimentation Pond Volume (min of 20% of WQV) r Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) r Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) tration Pond Volume	36.60% in 0.666 in Required 1 99.99 cfs 135.9 cfs 28,866 cf 6 cf 6 cf 7 cf 8 cf 8 cf 5 cf 6 cf 5 cf	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	558.00 559.00 Filtration Pond Stage (ft msl) (Elevation) 553.00 554.00 555.00 556.00 557.25 558.00	0.75 1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00	5.00 6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00	2,795 3,053 Area (sf) 3,776 4,536	2,023 2,923 Volume (cf) 0.00	9,699 12,622 Cumulative Volume (cf) 0.00	TOP OF POND Combined Pond Volumes (cf) 0.00	Notes		
inage area Impervious Cover puture Depth (CD) = (0.5+(IC-20)/100) TER QUALITY CONTROL CALCULATIONS Water Quality Control is to be BIOFILTRATON year peak flow rate to control (Q25) -year peak flow rate to control (Q100) ter Quality Volume (WQV=CD*DA*3630) @ WQE timum Ponding Depth above Sand Bed (H) limentation Pond Area Full Sedimentation Pond Volume (min. of WQV) Partial Sedimentation Pond Volume (min of 20% of WQV) Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) ation Pond Volume	36.60% in 0.666 in Required 1 99.99 cfs 135.9 cfs 28,866 cf 6 cf 6 cf 7 cf 8 cf 8 cf 5 cf 6 cf 5 cf	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	559.00 Filtration Pond Stage (ft msl) (Elevation) 553.00 554.00 555.00 556.00 557.25 558.00	1.00 Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00 1.00	6.00 Cumulative Pond Depth (ft) 0.00 1.00 2.00	3,053 Area (sf) 3,776 4,536	2,923 Volume (cf) 0.00	12,622 Cumulative Volume (cf) 0.00	Combined Pond Volumes (cf) 0.00	Notes		
ure Depth (CD) = (0.5+(IC-20)/100) TER QUALITY CONTROL CALCULATIONS Water Quality Control is to be BIOFILTRATON ear peak flow rate to control (Q25) year peak flow rate to control (Q100) er Quality Volume (WQV=CD*DA*3630) @ WQE mum Ponding Depth above Sand Bed (H) mentation Pond Area Full Sedimentation Pond Volume (min. of WQV) Partial Sedimentation Pond Volume (min of 20% of WQV) Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) et quality Elevation	0.666 in Required 1 99.99 cfs 135.9 cfs 28,866 cf 6 cf 6 cf 6 sf	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	Stage (ft msl) (Elevation) 553.00 554.00 555.00 556.00 557.00 557.25 558.00	Pond Depth (ft) 0.00 1.00 1.00 1.00 1.00	Cumulative Pond Depth (ft) 0.00 1.00 2.00	(sf) 3,776 4,536	(cf) 0.00	Cumulative Volume (cf) 0.00	Volumes (cf) 0.00	Notes		
ER QUALITY CONTROL CALCULATIONS Water Quality Control is to be BIOFILTRATON ear peak flow rate to control (Q25) year peak flow rate to control (Q100) er Quality Volume (WQV=CD*DA*3630) @ WQE mum Ponding Depth above Sand Bed (H) mentation Pond Area Full Sedimentation Pond Volume (min. of WQV) Partial Sedimentation Pond Volume (min of 20% of WQV) Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) tion Pond Volume er Quality Elevation	Required	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	Stage (ft msl) (Elevation) 553.00 554.00 555.00 556.00 557.00 557.25 558.00	(ft) 0.00 1.00 1.00 1.00 1.00	(ft) 0.00 1.00 2.00	(sf) 3,776 4,536	(cf) 0.00	Volume (cf) 0.00	Volumes (cf) 0.00	Notes		
Water Quality Control is to be BIOFILTRATON ear peak flow rate to control (Q25) year peak flow rate to control (Q100) er Quality Volume (WQV=CD*DA*3630) @ WQE mum Ponding Depth above Sand Bed (H) mentation Pond Area Full Sedimentation Pond Volume (min. of WQV) Partial Sedimentation Pond Volume (min of 20% of WQV) Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) er Quality Elevation	99.99 cfs 135.9 cfs 28,866 cf 28,866 cf 6,161.22 cf 5 sf	102.14 cfs 30,806 cf 4.25 ft 1,763 sf cf	(Elevation) 553.00 554.00 555.00 556.00 557.00 557.25 558.00	(ft) 0.00 1.00 1.00 1.00 1.00	(ft) 0.00 1.00 2.00	(sf) 3,776 4,536	(cf) 0.00	Volume (cf) 0.00	Volumes (cf) 0.00	Notes		
ear peak flow rate to control (Q25) year peak flow rate to control (Q100) er Quality Volume (WQV=CD*DA*3630) @ WQE mum Ponding Depth above Sand Bed (H) mentation Pond Area Full Sedimentation Pond Volume (min. of WQV) Partial Sedimentation Pond Volume (min of 20% of WQV) Full Filtration Pond Area , Af = WQV/(7 + 2.33*H) Partial Filtration Pond Area , Af = WQV/(4 + 1.33*H) tion Pond Volume er Quality Elevation	135.9 cfs 28,866 cf 0 cf 0 cf 0 cf 0 sf	30,806 cf 4.25 ft 1,763 sf cf	554.00 555.00 556.00 557.00 557.25 558.00	1.00 1.00 1.00 1.00	1.00 2.00	4,536	the second second		the first second and the second second			
aar peak flow rate to control (Q25) ear peak flow rate to control (Q100) r Quality Volume (WQV=CD*DA*3630) @ WQE num Ponding Depth above Sand Bed (H) nentation Pond Area ull Sedimentation Pond Volume (min. of WQV) artial Sedimentation Pond Volume (min of 20% of WQV) ull Filtration Pond Area , Af = WQV/(7 + 2.33*H) artial Filtration Pond Area , Af = WQV/(4 + 1.33*H)	135.9 cfs 28,866 cf 0 cf 0 cf 0 cf 0 sf	30,806 cf 4.25 ft 1,763 sf cf	555.00 556.00 557.00 557.25 558.00	1.00 1.00 1.00	2.00		4,150	1150				
ear peak flow rate to control (Q100) Image: CD*DA*3630) @ WQE r Quality Volume (WQV=CD*DA*3630) @ WQE Image: CD*DA*3630) @ WQE num Ponding Depth above Sand Bed (H) Image: CD*DA*3630) @ WQE num Ponding Depth above Sand Bed (H) Image: CD*DA*3630) @ WQE nentation Pond Area Image: CD*DA*3630) @ WQE ull Sedimentation Pond Volume (min. of WQV) Image: CD*DA*3630) artial Sedimentation Pond Volume (min of 20% of WQV) Image: CD*DA*3630) ull Filtration Pond Area , Af = WQV/(7 + 2.33*H) Image: CD*DA*3630) artial Filtration Pond Area , Af = WQV/(4 + 1.33*H) Image: CD*DA*3630) ion Pond Volume Image: CD*DA*3630) Image: CD*DA*3630) r Quality Elevation Image: CD*DA*3630) Image: CD*DA*3630)	28,866 cf 28,866 cf cf cf 6,161.22 cf sf	4.25 ft 1,763 sf cf	556.00 557.00 557.25 558.00	1.00 1.00		0.000	4,924	4,150 9,074	4,737.72 11,552.39			
num Ponding Depth above Sand Bed (H) mentation Pond Area ull Sedimentation Pond Volume (min. of WQV) artial Sedimentation Pond Volume (min of 20% of WQV) ull Filtration Pond Area , Af = WQV/(7 + 2.33*H) artial Filtration Pond Area , Af = WQV/(4 + 1.33*H) ion Pond Volume r Quality Elevation	□ cf □ 6,161.22 cf □ sf	4.25 ft 1,763 sf cf	557.25 558.00	State of the second sec		6,139	5,726	14,801	19,427.46			
num Ponding Depth above Sand Bed (H) nentation Pond Area ull Sedimentation Pond Volume (min. of WQV) artial Sedimentation Pond Volume (min of 20% of WQV) ull Filtration Pond Area , Af = WQV/(7 + 2.33*H) artial Filtration Pond Area , Af = WQV/(4 + 1.33*H) ion Pond Volume r Quality Elevation	□ cf □ 6,161.22 cf □ sf	4.25 ft 1,763 sf cf	558.00	0.25	4.00	6,983	6,557	21,357	28,391.09			
mentation Pond Area Image: Constraint of the second stress of the second stresecond stresecond stress of the second stresecond stre	□ 6,161.22 cf □ sf	1,763 sf cf		0.75	4.25 5.00	7,199 7,856	1,773 5,644	23,130 28,774	30,806.11 38,473.14	WQV	and the second s	
artial Sedimentation Pond Volume (min of 20% of WQV) ull Filtration Pond Area , Af = WQV/(7 + 2.33*H) artial Filtration Pond Area , Af = WQV/(4 + 1.33*H) on Pond Volume r Quality Elevation	□ 6,161.22 cf □ sf			1.00	6.00	8,757	8,302	37,076		TOP OF POND	SOIL R	
ull Filtration Pond Area , Af = WQV/(7 + 2.33*H)	□sf	7,676.05 cf			DETE	ENTION POND -	SOUTH				510	
artial Filtration Pond Area , Af = WQV/(4 + 1.33*H)	□ 3,191.52 sf			1	remental Cumulative 0.4	1 - 0.	8' Orifice @ 2	2 - 0.6' Orifice @	O ,			
Quality Elevation		3,776.14 sf	Elev. (ft) Depth (ft) F	Pr. Area (ft²) Area (ac) Vo		~	ter: 550.50 (cfs)	Center: 550.80 0.50' Weir @ (cfs) 552.50 (cfs)		~ ·		
		21,357 cf	550.00 0.00	3 0.00007	0 0	0.00	-		0.00	WQV		
		557.25 ft msl	550.50 0.00 550.80 0.00	3 0.00007 3 0.00007	0 0 0 0	0.48	0.00	0.00 -	0.48			
	□ 557.25 ft msl	557.25 ft msl	551.00 1.00 552.00 1.00		3,338 3,338 16,386 19,724	1.35 3.82	1.71 2.96	1.22 - 2.98 -	4.28			
of Splitter Weir		120 #	552.50 0.50	23,961 0.55007	11,980 31,704	5.34	3.42	3.55 0.00	12.31			
n of Splitter Weir red head to Pass Q100 (max 1ft)	□ 1.00 ft	130 ft 0.495188 ft	553.00 0.50	34,905 0.80132	14,631 34,355	7.01	3.83	4.04 0.53	15.41			
reeboard to pass Q100 (min 0.25 ft)	0.25 ft	1.750 ft	554.001.00555.001.00	35,363 0.81183	35,134 69,489 35,363 104,852	10.80 15.09	4.53 5.13	4.87 2.76 5.58 5.93	22.95 31.74			
peripheral wall (elev)		556.75 ft msl	556.00 1.00 556.50 0.50		35,363 140,216 17,682 157,897	19.84 22.37	5.68 5.93	6.21 9.82 6.50 12.00	41.55 46.80			
	□ 48 hrs	48.00 hrs	557.00 0.50	35,363 0.81183	17,682 157,897	25.00	6.17	6.78 14.32	52.27		NOTE 1. ROCI	
drain Orifice Size (diameter) drain Orifice Size (area)	in sq in	0.76 in 0.45 sq in	558.00 1.00 558.31 0.31		35,363 193,261 10,963 204,223	30.55 32.34	6.63 6.76	7.31 19.35 7.46 21.01	63.83 67.57	100 YR WSEL	SPECIFIC	
	эүш	U.TO SYIII	559.00 0.69		24,401 228,624	36.45	7.06	7.80 24.86	76.16	TOP OF POND	2. ROCI ACCORD	
GICAL ELEMENTS CALCULATIONS:			Dete	ention Pond 1 Routing	DETEN	TION POND 1 WSE					STANDAR	
e Area of Entire Pond Bottom (SA)	□ 400 sf	5539.14 sf	Peak In-	Max Water	2 YEA	AR 553.55					3. GEO 6205.	
	□ 400 si □ 40 plants	554.00 plants	Return Event Flow	Peak Out- Surface Flow (CFS) Elevation	Max Storage <u>10 YE</u> (Ac-ft) <u>25 YE</u>						4. AGG	
nentation Pond Plantings (Min. 20% of Total Plantings)	□ 8 plants	111.00 plants	(CFS)	(ft)	100 YE						ITEM NO.	
ion Pond Plantings (Min. 50% of Total Planitings)	20 plants	443.00 plants	2 81.50 10 135.66	19.39 553.55 33.15 555.15	<u>1.57</u> 2.86						NOTED O	
TOP OF WALL ELEV. 559.00 0.50' WEIR © 552.50 0.45' WEIR © 550.00 0.45' WEIR © 550.00 1 - 0.80' ORIF © 550.00 10'X6' STILLING BASIN PER DETAIL THIS SHEET		10 YR 555.15	<u>100 YR 55</u> 25 YR 556.29 	58.25		3'X3' RECTANG 8' WIDE ROU RIP-R	ELEV. 551.20	WQE: 557.25	8" MIN LINER (ONLY V REQUIR	VHERE	OPTIONAL RAISED OUTLET PIPE IT MIN IT	
TOP OF POND 4.00'	* 3:		QE: 557.25 (TYP.): 5 TOP OF TOP OF GRAVEL TO START 1. BIOFILTRATION MEDIA	553.00 	OF GABION WALL 556.75 108.00' 553.00 553.00 3' CON SPLASE	SEDIME	10 – 1'X1.5 OPENINGS FL = - – – – – – 2.00% ENTATION BASIN 3' WIDE RIF	359.00 ° ORIFICE = 554.00 → 554.00 → 554.00 →	ATER QUALITY VERFLOW WEIR 57.25			
			6" PVC RAISED ORIFICE W ORIFICE PLATE 0.76" DIA. BEGIN INV: 550.75 END INV: 551.40	TION B-B							FILTRATION P	

C8J-2021-0141.0APA

EXHIBIT 6 – RIPARIAN ZONE MITIGATION FUND Q7 FORM

Appendix Q-7: Riparian Zone Mitigation

Section 25-8-364 of the Land Development Code (*Floodplain Modification*) allows for mitigation where restoration of floodplain health is infeasible, in accordance with Section 1.7 of this manual. The mitigation requirement may be satisfied by:

- (1) Paying into the Water Supply Mitigation Fund (see Option 1 Worksheet);
- (2) Transferring mitigation land to the City of Austin or placing restrictions on mitigation land through a conservation easement (see Option 2 Worksheet); or
- (3) A combination of these mitigation methods (see Option 1 and Option 2 Worksheets).

Section 25-8-261 of the Land Development Code (*Critical Water Quality Zone Development*) allows for payment into the Riparian Zone Mitigation Fund as mitigation for a utility line in urban and suburban watersheds located parallel to and within the Critical Water Quality Zone (CWQZ) if on-site restoration is infeasible, in accordance with Section 1.5 of this manual.

If land is dedicated or restricted, it must be approved by the City and the applicant must file in the deed records a restrictive covenant, approved by the city attorney, that runs with the transferring tract and describes the restrictions on development and vegetation management. In addition, the applicant shall pay all costs of restricting the mitigation land or transferring the mitigation land to the City, including the costs of:

- (a) an environmental site assessment without any recommendations for further clean-up, certified to the City not earlier than the 120th day before the closing date transferring land to the City;
- (b) a category 1(a) land title survey, certified to the City and the title company not earlier than the 120th day before the closing date transferring land to the City;
- (c) a title commitment with copies of all Schedule B and C documents, and an owner's title policy;
- (d) a fee simple deed, or, for a restriction, a restrictive covenant approved as to form by the city attorney;
- (e) taxes prorated to the closing date;
- (f) recording fees; and charges or fees collected by the title company.

The mitigation land must also have acceptable operating & maintenance (O&M) conditions, as approved by the proposed land manager. The presence of an outstanding environmental feature or attribute may allow the mitigation land to deviate slightly from the previous criteria where desirable and appropriate, pending approval from the Director of the Watershed Protection Department. If the applicant is placing restrictions on the mitigation land, the conservation easement must be approved and recorded prior to the issuance of a development permit.

OPTION 1 WORKSHEET CALCULATION FOR PAYMENT INTO THE RIPARIAN ZONE MITIGATION FUND

A. OWNER/AGENT INFORMATION:

Name:	Brandon	Ryckman								
Company:	Zekelmar	n Property I	I, LLC							
Telephone:	734-582-		/	F	ax:					
B. PROJECT		ATION:								
Name:	_	8020 Parn	ner Lane	SH 130 N	W Proje	ct Assess	ment			
Location or Ad	dress:	8106 E Pa	armer La	ne, Austin,	Texas 7	8653				
Permit Numbe	r: _	C8J-2021	-0141.0/	APA and S	P-2021-0)446D				
Case Manager	r: _	Kate Cast	les						<u>.</u>	
C. MITIGATI	ON REQU	IRED								
							0.064	4 (Zone 1)		
Area Modified	within the 1	00-Year Flo	odplain:			_	2.62	6 (Zone 2)	(ac.)	
Area Disturbeo	d by a Paral	lel Utility wi	thin the (CWQZ:		_		0	(ac.)	
				Zone 1		Zone 2				
Ratio Applied ((circle):	1:1	2:1	(3:1)	4:1	6:1	8:1			
required. Mitigation Req	uired:				0.192	(Zone 1)+	15.756 (2	Zone 2)=15.9	948_ (ac.)	
D. PAYMEN	T CALCUL	ATION:								
Mitigation Land	d Provided I	oy Applican	t:			_		0	(ac.)	
<i>Mitigation lan Department a parallel utility</i>	nd the Pro	posed Lan	d Manag	er (Option	n 2 Work	(sheet). A				
Mitigation by P	ayment (ac	.) = Mitigati	on Requ	ired - Mitig	ation La	nd Provide	ed by Ap	plicant		
Mitigation by P	ayment:					_		15.948	(ac.)	
Base Fee:								\$15,00	0 per acre	
Annual Adjustr	ment Factor	:					7% beg	inning Octob	er 1, 2008	
Adjusted Fee:						\$_		38,678.01		
Total Fee:	Miti	gation by P	ayment	(ac.) x Ad	ljusted F	ee = \$ _		616,836.91		

E. AUTHORIZATION:				
	Q			
Owner/Agent:				
Reviewed by:	Miranda Reinhard			
_	For the Director of the Planning_and Development Review Department	_		

Applicant Variance Applications

April 19, 2022

City of Austin Land Use Commission 301 W 2nd St Austin, Texas 78701

RE: 8020 Parmer Lane SH 130 NW Fill Variance Request Case Number: C8J-2021-0141.0A

On behalf of our clients, we are submitting this Fill Variance Request Letter for 8106 & 8020 Parmer Lane, Austin, TX. The project will include the development of a new multi-family complex and a new industrial complex. Necessary infrastructure (access, utilities, water quality/detention ponds, parking and covered parking, etc.) is also included in the proposed plan. The site is in the Extraterritorial Jurisdiction of the City of Austin, Texas and is located west of SH-130, north of Parmer Lane, and south of Harris Branch. The unplatted subject tract is comprised of four (4) tracts of land with parcel numbers and legal descriptions as follows:

- 247979: ABS 794 SUR 42 WILBARGER J ACR 28.474 (1-D-1)
- 526010: ABS 690 SUR 54 SANDERS W H ABS 794 SUR 42 WILBARGER J ACR 3.000
- 236741: ABS 690 SUR 54 SANDERS W H ACR 1.230
- 236750: ABS 690 SUR 54 SANDERS W H ACR 10.3200

The property is located within the Gilleland Creek Watershed and Harris Branch Watershed, which are classified as Suburban Watersheds. A northern portion and southern portion of this tract are within the boundaries of the 100-year flood of a waterway within the limits of study of the Federal Flood Insurance Administration FIRM No. 48453C0480J, dated August 18, 2014. Water and wastewater service will be provided by the City of Austin.

The property is proposed to be platted as two lots. The site is proposed to be developed on the two lots consisting of:

- A ±28.47-acre tract of land proposed to be developed with a Light Industrial Use
- A ±14.55-acre tract of land proposed to be developed as a multi-family development

A variance is being requested to Land Development Code Section 30-5-342 to allow fill over 4 feet. The purpose of this variance is to be able to construct one (1) joint use access driveway to Parmer lane. This will be the only traffic access point for the property, and will serve both proposed developments. The reasons for needing a variance to construct this access are as follows:

• The entire property frontage on Parmer lane is within the 100 yr floodplain and Critical Water Quality Zone.

Transportation | Water Resources | Land Development | Surveying | Environmental

8020 Parmer Lane SH 130 NW Project Assessment Sidewalk Variance Request Letter Case Number: C8J-2021-0141.0APA April 19, 2022 Page 2 of 2

- Access is restricted to SH 130 by a recorded control of access, and TxDOT has confirmed they will not consider releasing the control of access for a daily use access point.
- The only option for access to the property is to build a bridge crossing over the existing waterway (Gilleland Creek Tributary 1C) on the southern portion of the site so that the development will have access to Parmer Lane. The site is located on an Imagine Austin corridor, and so LDC 25-8-262(D) allows a driveway to cross the CWQZ if necessary to develop the property.
- To make this access connection, a variance to Land Development Code Section 30-5-342 is required to all fill over 4 feet is necessary. Exhibits showing the fill requirement to make the bridge connection are included with this submittal to show the extent of the fill required to building the bridge abutments and approaches.
- The minimum fill over 4 feet is proposed to build the bridge so that the low chord of the bridge is 2' above the 100 yr water surface elevation of the 100 yr floodplain, as required for safe access by code.

This variance request is necessary for the reasonable, economic development of the subject tract. The minimum necessary deviations from the code are proposed to make a single access point to the site possible. No floodplain adverse impacts to adjacent properties are proposed, and a flood study, environmental study, and mitigation plans have been prepared and reviewed by city staff to enhance the floodplain area and better the environmental conditions on site.

Thank you for your consideration of this variance request. Please contact our office if you have any questions or need additional information regarding this variance request.

Sincerely, Pape-Dawson Engineers, Inc.

Sarah Ulusoy, P.E. Senior Project Manager

ENVIRONMENTAL COMMISSION VARIANCE APPLICATION FORM

PROJECT DESCRIPTION Applicant Contact Information

Name of Applicant	Pape-Dawson Engineers, Inc (Sarah Ulusoy, P.E.)
Street Address	10801 N Mopac Expy, Bldg. 3 Ste. 200
City State ZIP Code	Austin, Texas 78759
Work Phone	512-454-8711
E-Mail Address	sulusoy@pape-dawson.com
Variance Case Information	n
Case Name	8020 Parmer Lane/SH 130 NW Project Assessment
Case Number	C8J-2021-0141.0A
Address or Location	8020 E Parmer Lane, Manor, Tx 78653
Environmental Reviewer Name	Pamela Abee-Taulli
Environmental Resource Management Reviewer Name	Miranda Reinhard
Applicable Ordinance	Ord. 031211-11; Ord. 031211-42; Ord. No. 20170615-102 , Pt. 48, 6-15- 17.
Watershed Name	Gilleland Creek, Harris Branch
Watershed Classification	UrbanX SuburbanWater Supply SuburbanWater Supply RuralBarton Springs Zone

City of Austin | Environmental Commission Variance Application Guide 1

Edwards Aquifer Recharge Zone	 Barton Springs Segment Northern Edwards Segment X Not in Edwards Aquifer Zones
Edwards Aquifer Contributing Zone	□ Yes X No
Distance to Nearest Classified Waterway	0.0 Miles (located on-site)
Water and Waste Water service to be provided by	Austin Water Utility
Request	The variance request is as follows (Cite code references): Variance to 30-5-342 to allow fill over 4 feet

Impervious cover	Existing	Proposed
square footage:	156,380 SF	1,019,330 SF
acreage:	3.60 acres	23.40 acres
percentage:	10.8%	60.0%
Provide general description of the property (slope range, elevation range, summary of vegetation / trees, summary of the geology, CWQZ, WQTZ, CEFs, floodplain, heritage trees, any other notable or outstanding characteristics of the property)	Industrial Use A ±14.55-acre tract of land proposed development This site The existing site generally slopes to the nubetween two suburban watersheds, Harre proposed drainage areas generally respect separate water quality and detention system of the site of the site. The elevation	ets located in the Austin ETJ: osed to be developed with a Light ed to be developed as a multi-family ortheast and southwest and is split ris Branch and Gilleland Creek. The the existing watershed division, and stems will be provided for the two hed. The slopes range from 0% to
	581 MSL. The project site is depicted within the "No	rthern Blackland Prairie Level IV" eco

region of Texas. The vegetation identified on the project site largely reflects vegetation common to this eco region (Cedar Elm, Ashe Juniper, Sugar Hackberry, Texas Pricklypead, Annual Bastard Cabbage, Johnson grass, Maximilian Sunflower, etc). A tree survey was not completed as the site is within the ETJ. The site soils consist of hydrologic group D soils such as Heiden clay, Houston Black clay, and Tinn Clay soils according to the USDA soil survey.

There are existing critical water quality zones on both the north and south portions of the property. There are also existing wetland CEFs within the Critical Water Quality Zone on the south site of the site.

The northern portion and southern portion of this tract are also within the boundaries of the 100-year flood of a waterway within the limits of study of the Federal Flood Insurance Administration FIRM No. 48453C0480J, dated August 18, 2014.

The entire property frontage on Parmer Lane is within the 100 yr floodplain and Critical Water Quality Zone. Access is restricted to SH 130 by a recorded control of access and TxDOT has confirmed they will not consider releasing the control of access for a daily access point.

The only option for access to the property is to build a bridge crossing over the existing waterway (Gilleland Creek Tributary 1C) on the southern portion of the site so that the development will have access to Parmer Lane. The site is located on an Imagine Austin corridor, therefore LDC 25-8-262(D) allows a driveway to cross the CWQZ if necessary to develop the property.

Clearly indicate in what way the proposed project does not comply with current Code (include maps and exhibits)

There is an existing access driveway on Parmer in the location of the proposed bridge, but future access will need to provide a drive that meets the Fire Departments (ESD #12) approval and Travis County design standards. As a result, the low cord of the bridge must be a minimum of 2 feet above the 100 yr water surface elevation of the floodplain. This requires filling in the floodplain to build the bridge approach and abutment at the required elevation above the floodplain, and also results in some additional grading in the floodplain volume to offset the effect of the bridge. No adverse impacts to other properties are proposed with these improvements.

To make this access connection, a variance to Land Development Code Section 30-5-342 to allow fill over 4 feet is necessary. Exhibits showing the fill requirement to make the bridge connection are included with this submittal to show the extent of the fill required to building the bridge abutments and approaches.

4

City of Austin | Environmental Commission Variance Application Guide

	An additional variance to Land Development Code section 30-5-261 (G)
	to allow floodplain modification in the Critical Water Quality Zone is also
	required, however a separate variance submittal has been prepared and
	submitted for evaluation of that variance.

FINDINGS OF FACT

As required in LDC Section 30-5-41, in order to grant a variance, the Land Use Commission must make the following findings of fact:

Include an explanation with each applicable finding of fact.

Project: 8020 Parmer Lane/SH 130 NW Project Assessment

Ordinance: Ord. 031211-11; Ord. 031211-42; Ord. No. 20170615-102 , Pt. 48, 6-15-17.

- Α. Land Use Commission variance determinations from Chapter 30-5-41 of the City Code:
 - 1. The requirement will deprive the applicant of a privilege available to owners of similarly situated property with approximately contemporaneous development subject to similar code requirements.

Yes: Without this variance, the site will not have any driveway access points for traffic to access the property. The site is undevelopable without an access point. There is a Restriction of Access recorded for SH 130, which TxDOT will not support lifting or modifying a full access driveway. The entirety of the Parmer frontage is located within the floodplain in existing conditions. Therefore, fill greater than 4' is required to build a bridge abutment and connecting drive approaches that are above the 100 yr water surface elevation of the floodplain.

- 2. The variance:
 - a) Is not necessitated by the scale, layout, construction method, or other design decision made by the applicant, unless the design decision provides greater overall environmental protection than is achievable without the variance.

Yes: There is no development of any scale possible without a driveway access point. No driveway access point is achievable for this property without a variance.

b) Is the minimum deviation from the code requirement necessary to allow a reasonable use of the property.

Yes : The minimum fill over 4 feet is proposed to build the bridge so that the low chord of the bridge is 2' above the 100 yr water surface elevation of the 100 yr floodplain, as required for safe access by code. Additionally, two developments will use this access point as a joint use access drive, to limit the modification of the floodplain and environmental features along the property frontage. Please see attached cut and fill exhibits.

c) Does not create a significant probability of harmful environmental consequences.

Yes: A flood study has been completed and reviewed by the City of Austin to prove no adverse impact to other properties. The bridge piers have been place to minimize the impact to the existing wetland CEFs, and a CEF mitigation and floodplain restoration plan has been proposed and reviewed by City of Austin staff.

3. Development with the variance will result in water quality that is at least equal to the water quality achievable without the variance.

Yes: Full water quality treatment for the proposed impervious cover on site will be provided with the site plan. Water Quality treatment will be provided at the full measure required by the code. There is existing impervious cover on site and in the floodplain from which run off is not currently treated, the proposed development will remove this and full treat the proposed impervious cover.

- B. Additional Land Use Commission variance determinations for a requirement of Section 25-8-422 (Water Quality Transition Zone), Section 25-8-452 (Water Quality Transition Zone), Article 7, Division 1 (Critical Water Quality Zone Restrictions), or Section 25-8-368 (Restrictions on Development Impacting Lake Austin, Lady Bird Lake, and Lake Walter E. Long):
 - 1. The criteria for granting a variance in Subsection (A) are met;
 - **Yes:** The criteria for Subsection (A) are met, per the descriptive narratives provided in this document and the supporting exhibits
 - 2. The requirement for which a variance is requested prevents a reasonable, economic use of the entire property.
 - Yes: There is no development of any scale possible without a driveway access point. No driveway access point is achievable for this property without a variance.
 - 3. The variance is the minimum deviation from the code requirement necessary to allow a reasonable, economic use of the entire property.

6

Yes: The minimum fill over 4 feet is proposed to build the bridge so that the low chord of the bridge is 2' above the 100 yr water surface elevation of the 100 yr floodplain, as required for safe access by code. Additionally, two developments will use this access point as a joint use access drive, to limit the modification of the floodplain and environmental features along the property frontage.

**Variance approval requires all above affirmative findings.

Exhibits for Commission Variance

Aerial photos of the site

Site photos

Aerial photos of the vicinity

Context Map—A map illustrating the subject property in relation to developments in the vicinity to include nearby major streets and waterways

Topographic Map - A topographic map is recommended if a significant grade change on the subject site exists or if there is a significant difference in grade in relation to adjacent properties.

For cut/fill variances, a plan sheet showing areas and depth of cut/fill with topographic elevations.

Site plan showing existing conditions if development exists currently on the property

Proposed Site Plan- full size electronic or at least legible 11x17 showing proposed development, include tree survey if required as part of site or subdivision plan

Environmental Map – A map that shows pertinent features including Floodplain, CWQZ, WQTZ, CEFs, Setbacks, Recharge Zone, etc.

An Environmental Resource Inventory pursuant to ECM 1.3.0 (if required by 25-8-121)

Applicant's variance request letter

April 19, 2022

City of Austin Land Use Commission 301 W 2nd St Austin, Texas 78701

RE: 8020 Parmer Lane SH 130 NW Floodplain Modification in the Critical Water Quality Zone Variance Request Case Number: C8J-2021-0141.0A

On behalf of our clients, we are submitting this Floodplain Modification in the Critical Water Quality ZOn Variance Request Letter for 8106 & 8020 Parmer Lane, Austin, TX. The project will include the development of a new multi-family complex and a new industrial complex. Necessary infrastructure (access, utilities, water quality/detention ponds, parking and covered parking, etc.) is also included in the proposed plan. The site is in the Extraterritorial Jurisdiction of the City of Austin, Texas and is located west of SH-130, north of Parmer Lane, and south of Harris Branch. The unplatted subject tract is comprised of four (4) tracts of land with parcel numbers and legal descriptions as follows:

- 247979: ABS 794 SUR 42 WILBARGER J ACR 28.474 (1-D-1)
- 526010: ABS 690 SUR 54 SANDERS W H ABS 794 SUR 42 WILBARGER J ACR 3.000
- 236741: ABS 690 SUR 54 SANDERS W H ACR 1.230
- 236750: ABS 690 SUR 54 SANDERS W H ACR 10.3200

The property is located within the Gilleland Creek Watershed and Harris Branch Watershed, which are classified as Suburban Watersheds. A northern portion and southern portion of this tract are within the boundaries of the 100-year flood of a waterway within the limits of study of the Federal Flood Insurance Administration FIRM No. 48453C0480J, dated August 18, 2014. Water and wastewater service will be provided by the City of Austin.

The property is proposed to be platted as two lots. The site is proposed to be developed on the two lots consisting of:

- A ±28.47-acre tract of land proposed to be developed with a Light Industrial Use
- A ±14.55-acre tract of land proposed to be developed as a multi-family development

A variance is being requested to Land Development Code Section Variance to 30-5-261(G) to allow floodplain modification in the Critical Water Quality Zone. The purpose of this variance is to be able to construct one (1) joint use access driveway to Parmer lane. This will be the only traffic access point for the property, and will serve both proposed developments. The reasons for needing a variance to construct this access are as follows:

8020 Parmer Lane SH 130 NW Project Assessment Sidewalk Variance Request Letter Case Number: C8J-2021-0141.0APA April 19, 2022 Page 2 of 2

- The entire property frontage on Parmer lane is within the 100 yr floodplain and Critical Water Quality Zone.
- Access is restricted to SH 130 by a recorded control of access, and TxDOT has confirmed they will not consider releasing the control of access for a daily use access point.
- The only option for access to the property is to build a bridge crossing over the existing waterway (Gilleland Creek Tributary 1C) on the southern portion of the site so that the development will have access to Parmer Lane. The site is located on an Imagine Austin corridor, and so LDC 25-8-262(D) allows a driveway to cross the CWQZ if necessary to develop the property.
- To make this access connection, a variance to Land Development Code Section 30-5-261(G) to allow floodplain modification in the Critical Water Quality Zone is necessary. Fill is required to build a bridge abutment and connecting drive approaches within the floodplain area. Cut is also required within the floodplain to offset the floodplain volume displaced by the bridge. Exhibits showing the grading requirements to make the bridge connection are included with this submittal to show the extent of the cut and fill required to building the bridge abutments and approaches.
- The minimum grading modification in the floodplain and Critical Water Quality Zone is proposed to build the bridge so that the low chord of the bridge is 2' above the 100 yr water surface elevation of the 100 yr floodplain, as required for safe access by code.

This variance request is necessary for the reasonable, economic development of the subject tract. The minimum necessary deviations from the code are proposed to make a single access point to the site possible. No floodplain adverse impacts to adjacent properties are proposed, and a flood study, environmental study, and mitigation plan have been prepared and reviewed by city staff to enhance the floodplain area and better the environmental conditions on site.

Thank you for your consideration of this variance request. Please contact our office if you have any questions or need additional information regarding this variance request.

Sincerely, Pape-Dawson Engineers, Inc.

Musay

Sarah Ulusoy, P.E. Senior Project Manager

ENVIRONMENTAL COMMISSION VARIANCE APPLICATION FORM

PROJECT DESCRIPTION Applicant Contact Information

Name of Applicant	Pape-Dawson Engineers, Inc (Sarah Ulusoy, P.E.)
Street Address	10801 N Mopac Expy, Bldg. 3 Ste. 200
City State ZIP Code	Austin, Texas 78759
Work Phone	512-454-8711
E-Mail Address	sulusoy@pape-dawson.com
Variance Case Information	n
Case Name	8020 Parmer Lane/SH 130 NW Project Assessment
Case Number	C8J-2021-0141.0A
Address or Location	8020 E Parmer Lane, Manor, Tx 78653
Environmental Reviewer Name	Pamela Abee-Taulli
Environmental Resource Management Reviewer Name	Miranda Reinhard
Applicable Ordinance	Ord. 031211-11; Ord. 031211-42; Ord. 20131017-046; Ord. No. 20160922-048 , Pt. 8; Ord. No. 20170615-102 , Pt. 44, 6-15-17.
Watershed Name	Gilleland Creek, Harris Branch
Watershed Classification	UrbanX SuburbanWater Supply SuburbanWater Supply RuralBarton Springs Zone

City of Austin | Environmental Commission Variance Application Guide 1

Edwards Aquifer Recharge Zone	 Barton Springs Segment Northern Edwards Segment X Not in Edwards Aquifer Zones
Edwards Aquifer Contributing Zone	□ Yes X No
Distance to Nearest Classified Waterway	0.0 Miles (located on-site)
Water and Waste Water service to be provided by	Austin Water Utility
Request	The variance request is as follows (Cite code references): Variance to 30-5-261(G) to allow floodplain modification in the Critical Water Quality Zone.

Impervious cover	Existing	Proposed
square footage:	156,380 SF	1,019,330 SF
acreage:	3.60 acres	23.40 acres
percentage:	10.8%	60.0%
Provide general description of the property (slope range, elevation range, summary of vegetation / trees, summary of the geology, CWQZ, WQTZ, CEFs, floodplain, heritage trees, any other notable or outstanding characteristics of the	Industrial Use	ts located in the Austin ETJ: osed to be developed with a Light ed to be developed as a multi-family to the northeast and southwest and is arris Branch and Gilleland Creek. The the existing watershed division, and stems will be provided for the two hed. The slopes range from 0% to
property)	581 MSL.	
	The project site is depicted within the "No	rthern Blackland Prairie Level IV" eco

region of Texas. The vegetation identified on the project site largely reflects vegetation common to this eco region (Cedar Elm, Ashe Juniper, Sugar Hackberry, Texas Pricklypead, Annual Bastard Cabbage, Johnson grass, Maximilian Sunflower, etc). A tree survey was not completed as the site is within the ETJ. The site soils consist of hydrologic group D soils such as Heiden clay, Houston Black clay, and Tinn Clay soils according to the USDA soil survey.

There are existing critical water quality zones on both the north and south portions of the property. There are also existing wetland CEFs within the Critical Water Quality Zone on the south site of the site.

The northern portion and southern portion of this tract are also within the boundaries of the 100-year flood of a waterway within the limits of study of the Federal Flood Insurance Administration FIRM No. 48453C0480J, dated August 18, 2014.

The entire property frontage on Parmer lane is within the 100 yr floodplain and Critical Water Quality Zone. Access is restricted to SH 130 by a recorded control of access, and TxDOT has confirmed they will not consider releasing the control of access for a daily access point.

The only option for access to the property is to build a bridge crossing over the existing waterway (Gilleland Creek Tributary 1C) on the southern portion of the site so that the development will have access to Parmer Lane. The site is located on an Imagine Austin corridor, and so LDC 25-8-262(D) allows a driveway to cross the CWQZ if necessary to develop the property.

Clearly indicate in what way the proposed project does not comply with current Code (include maps and exhibits)

There is an existing access driveway on Parmer in the location of the proposed bridge, but future access will need to provide a drive that meets the Fire Departments (ESD #12) approval and Travis County design standards. As a result, the low cord of the bridge must be a minimum of 2 feet above the 100 yr water surface elevation of the floodplain. This requires filling in the floodplain to build the bridge approach and abutment at the required elevation above the floodplain, and also results in some additional grading in the floodplain volume to offset the effect of the bridge. No adverse impacts to other properties are proposed with these improvements.

To make this access connection, a variance to Land Development Code Section 30-5-261(G) to allow floodplain modification in the Critical Water Quality Zone is necessary. Exhibits showing the grading required in the floodplain and Critical Water Quality Zone to make the bridge connection are included with this submittal. This grading is necessary to

City of Austin | Environmental Commission Variance Application Guide

construct the bridge at an appropriate elevation above the floodplain and offset the floodplain volume displaced by the proposed bridge and abutments. The grading to offset the displaced volume is necessary to prevent rises in the floodplain elevation offsite. No adverse impacts to other properties are proposed.

An additional variance to Land Development Code section Variance to 30-5-342 to allow fill over 4 feet is also required, however a separate variance submittal has been prepared and submitted for evaluation of that variance.

FINDINGS OF FACT

As required in LDC Section 30-5-41, in order to grant a variance the Land Use Commission must make the following findings of fact:

Include an explanation with each applicable finding of fact.

Project: 8020 Parmer Lane/SH 130 NW Project Assessment

Ordinance: Ord. 031211-11; Ord. 031211-42; Ord. 20131017-046; Ord. No. 20160922-048 , Pt. 8; Ord. No. 20170615-102, Pt. 44, 6-15-17.

- A. Land Use Commission variance determinations from Chapter 30-5-41 of the City Code:
 - 1. The requirement will deprive the applicant of a privilege available to owners of similarly situated property with approximately contemporaneous development subject to similar code requirements.

Yes : Without this variance, the site will not have any driveway access points for traffic to access the property. The site is undevelopable without an access point. There is a Restriction of Access recorded for SH 130, which TxDOT will not support lifting or modifying a full access driveway. The entirety of the Parmer frontage is located within the floodplain in existing conditions. Therefore, fill is required to build a bridge abutment and connecting drive approaches within the floodplain area. Cut is also required within the floodplain to offset the floodplain volume displaced by the bridge. There a no adverse impacts proposed to the floodplain elevations on adjacent properties with the proposed improvements, per the requirements of the code.

- 2. The variance:
 - a) Is not necessitated by the scale, layout, construction method, or other design decision made by the applicant, unless the design decision provides greater overall environmental protection than is achievable without the variance;

Yes: There is no development of any scale possible without a driveway access point. No driveway access point is achievable for this property without a variance for grading in the floodplain.

b) Is the minimum deviation from the code requirement necessary to allow a reasonable use of the property;

Yes : The minimum grading needed is proposed to build the bridge so that the low chord of the bridge is 2' above the 100 yr water surface elevation of the 100 yr floodplain, as required for safe access by code. Additionally, two developments will use this access point as a joint use access drive, to limit the modification of the floodplain and environmental features along the property frontage.

c) Does not create a significant probability of harmful environmental consequences.

Yes: A flood study has been completed and reviewed by the City of Austin to prove no adverse impact to other properties. The bridge piers have been place to minimize the impact to the existing wetland CEFs, and a CEF mitigation and floodplain restoration plan has been proposed and reviewed by City of Austin staff.

3. Development with the variance will result in water quality that is at least equal to the water quality achievable without the variance.

Yes: Full water quality treatment for the proposed impervious cover on site will be provided with the site plan. Water Quality treatment will be provided at the full measure required by the code. There is existing impervious cover on site and in the floodplain from which run off is not currently treated, the proposed development will remove this and full treat the proposed impervious cover.

- B. Additional Land Use Commission variance determinations for a requirement of Section 25-8-422 (Water Quality Transition Zone), Section 25-8-452 (Water Quality Transition Zone), Article 7, Division 1 (Critical Water Quality Zone Restrictions), or Section 25-8-368 (Restrictions on Development Impacting Lake Austin, Lady Bird Lake, and Lake Walter E. Long):
 - 1. The criteria for granting a variance in Subsection (A) are met;

6

- **Yes:** The criteria for Subsection (A) are met, per the descriptive narratives provided in this document and the supporting exhibits
- 2. The requirement for which a variance is requested prevents a reasonable, economic use of the entire property;
 - Yes: There is no development of any scale possible without a driveway access point. No driveway access point is achievable for this property without a variance.
- 3. The variance is the minimum deviation from the code requirement necessary to allow a reasonable, economic use of the entire property.
 - Yes: The minimum grading needed is proposed to build the bridge so that the low chord of the bridge is 2' above the 100 yr water surface elevation of the 100 yr floodplain, as required for safe access by code. Additionally, two developments will use this access point as a joint use access drive, to limit the modification of the floodplain and environmental features along the property frontage.

**Variance approval requires all above affirmative findings.

Exhibits for Commission Variance

Aerial photos of the site

Site photos

Aerial photos of the vicinity

Context Map—A map illustrating the subject property in relation to developments in the vicinity to include nearby major streets and waterways

Topographic Map - A topographic map is recommended if a significant grade change on the subject site exists or if there is a significant difference in grade in relation to adjacent properties.

For cut/fill variances, a plan sheet showing areas and depth of cut/fill with topographic elevations.

Site plan showing existing conditions if development exists currently on the property

Proposed Site Plan- full size electronic or at least legible 11x17 showing proposed development, include tree survey if required as part of site or subdivision plan

Environmental Map – A map that shows pertinent features including Floodplain, CWQZ, WQTZ, CEFs, Setbacks, Recharge Zone, etc.

An Environmental Resource Inventory pursuant to ECM 1.3.0 (if required by 25-8-121)

Applicant's variance request letter