Residential Circulation Sizing -2 Calculations

2. For Suction Entrapment Avoidance & Safety (APSP 7)

Proper Circulation/Pipe/Filter/Suction Outlet Selection has 2 primary concerns

1.For Circulation/Filtration Energy Efficiency (APSP 15) 2.For Suction Entrapment Avoidance & Safety (APSP 7)

Pool Owner

Location

1. For Circulation/Filtration Energy Efficiency (APSP 15)

 May be determined from Basic Formula- Pool Surf 	CAD design pro ace Area X Ave	ogram erage Depth	Pool/Spa t X 7.5 = Poo	otal volume I Volume in	Gallons	_gallons
Determine Desired Flow	v Rate(s)					
Maximum Filtration Flow Rate	e (gpm)= Pool	Volume (G	allons)	÷36	0 =gr	om (Pool
smaller than 13,000 gallons-	use 36gpm) (1	Urnover Rat	ie– 6 nours) i No2	Normai Low	speed opera	ation flow rate.
Is a calculated auxiliary flow	v rate required	^{res} ? I for Spa Je	 ets or Waterf	eatures?		ı
Spa- Number of iets X	Flow requireme	ent ofs	pecific spa ie	ts =	Desired A	ux Flow Rate
Waterfeatures- Design Flow	requirements f	or Waterfall	or Fountain			
Desired Calculated Auxilia	v Flow Rate					
		01				
Minimum Suction pipe Minimum Return pipe s	size @ 6 fps ize @ 8 fps	in. &	Suction B Return Bra	ranch Pi Inch Pipe	pe size@ 6 size@ 8 f	fpsin. psin.
Minimum Suction pipe Minimum Return pipe s Pipe Size	size @ 6 fps ize @ 8 fps 1.5"	in. &	Suction B Return Bra 2.5"	ranch Pi Inch Pipe 3"	pe size@ 6 size@ 8 fj 3.5"	6 fpsin. psin. 4"
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps	size @ 6 fps ize @ 8 fps 1.5" 38	in. &	Suction B Return Bra 2.5" 90	aranch Pij anch Pipe 3" 138	pe size@ 6 size@ 8 fj 3.5" 185	5 fpsin. psin. 4" 238
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps	size @ 6 fps ize @ 8 fps 1.5" 38 51	in. &	Suction BReturn Bra2.5"90119	anch Pipe 3" 138 184	pe size@ 6 size@ 8 f 3.5" 185 247	5 fpsin. psin. 4" 238 317
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: (size @ 6 fps ize @ 8 fps 1.5" 38 51 Cartridge .37	in. &	Return Bra 2.5" 90 119 ft Sand 1	aranch Pipe anch Pipe 3" 138 184 5 gpm/sq	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	5 fpsin. psin. 4" 238 317 pm/sq ft
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: C Filter Size– Pool Flow R	size @ 6 fps ize @ 8 fps 1.5" 38 51 Cartridge .37 ate ÷ Filter F	in. & in. & 2" 63 84 5 gpm/sq actor =	Return Bra 2.5" 90 119 ft Sand 1 sq ft	aranch Pipe anch Pipe 3" 138 184 5 gpm/sq	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	5 fpsin. psin. 4" 238 317 pm/sq ft
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: C Filter Size- Pool Flow R	size @ 6 fps ize @ 8 fps 1.5" 38 51 Cartridge .37 ate ÷ Filter F	in. & in. & 2" 63 84 5 gpm/sq actor =	Suction B Return Bra 2.5" 90 119 ft Sand 1 sq ft	aranch Pipe anch Pipe 3" 138 184 5 gpm/sq ter Make & Mode	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	5 fpsin. psin. 4" 238 317 pm/sq ft
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: (Filter Size– Pool Flow R Pump Controls- Integral	size @ 6 fps ize @ 8 fps 1.5" 38 51 Cartridge .37 ate ÷ Filter F to Pump	in. &	Suction B Return Bra 2.5" 90 119 ft Sand 1 Sq ft Fill Condition	aranch Pipe anch Pipe 3" 138 184 5 gpm/sq ter Make & Mode	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	5 fpsin. psin. 238 317 pm/sq ft
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: (Filter Size– Pool Flow R Pump Controls- Integral Filtration Pump with No Auxil	size @ 6 fps ize @ 8 fps 1.5" 38 51 Cartridge .37 ate ÷ Filter F to Pump iary load requir (Spa or Water	in. &	Suction B Return Bra 2.5" 90 119 ft Sand 1 Sq ft Fill c Digital beed. y use higher s	sranch Pipe anch Pipe 3" 138 184 5 gpm/sq ter Make & Mode Controller_	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	5 fpsin. psin. 4" 238 317 pm/sq ft
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: (Filter Size– Pool Flow R Pump Controls- Integral Filtration Pump with No Auxil Filtration pump with Auxiliary within 24 hours. Requires Integral APSP 7)	size @ 6 fps ize @ 8 fps 1.5" 38 51 cartridge .37 ate ÷ Filter F to Pump iary load requir (Spa or Water egral or Digital	in. &	Suction B Return Bra 2.5" 90 119 ft Sand 1 sq ft ["" sq ft ["" c Digital beed. y use higher s (Higher veloc	aranch Pipe anch Pipe 3" 138 184 5 gpm/sq ter Make & Mode Controller_ speed, but n ity still mus	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	to low speed d safety for
Minimum Suction pipe Minimum Return pipe s Pipe Size Nominal GPM @ 6fps Nominal GPM @ 8fps Determine Filter Size: (Filter Size– Pool Flow R Pump Controls- Integral Filtration Pump with No Auxil Filtration Pump with No Auxil Filtration pump with Auxiliary within 24 hours. Requires Int APSP 7) Controller Make 8	size @ 6 fps ize @ 8 fps 1.5" 38 51 cartridge .37 ate ÷ Filter F to Pump iary load requir (Spa or Water egral or Digital Model	in. &	A Suction B Return Bra 2.5" 90 119 ft Sand 1 sq ft ["" sq ft ["" sq ft ["" sq ft ["" sq ft [""	sranch Pipe anch Pipe 3" 138 184 5 gpm/sq ter Make & Mode Controller_ speed, but i ity still mus	pe size@ 6 size@ 8 f 3.5" 185 247 ft DE 2 g	s fpsin. psin. 4" 238 317 pm/sq ft to low speed d safety for

From Part 1– Desired Filtration Flow Rate (Min. 36 gpm) Spa- Number & Flow requirement of specific spa jets Waterfeatures- Design Flow requirements for Waterfall or Fountain

Maximum system flow can be determined

- 2. Use calculated Simplified TDH with manufacturer's certified pump curve.

To calculate TDH for a pool

The calculation for TDH is done by adding the factor for each pipe fitting, each foot of pipe and the factor for each piece of equipment together.

The swimming pool equipment manufacturers have tools to make these calculations easier.

A Simplified TDH is sometimes estimated by simply taking the number of feet of Suction

Simplified TDH Calculation (estimate) For each pipe size-

100 X Fric	peft./	Length of Pipe			
Add + E	TDH Loss/100 ft	Velocity	GPM	example	
= '	5.6	5.74	60	2"PVC	
he Simplified estimated TDH will always lead to a lower value					

than the actual TDH. Adding the actual resistance of all of the fittings, etc. will increase the resistance- decreasing the actual flow assuring that the Suction Outlet fitting will have flow less than Maximum

Pump Selection-	Pump Make & Model
Pump Selection-	Pump Make & Model

From Pu	<u>mp Curve-N</u>	Max Flow Rate for this	k
above		_gpm	

Submerged Suction Outlets-	Suction Ou
----------------------------	------------

Contractor Phone

Max. Flow Rate for Drain-Must be less than Max. Flow Rate of Pump above. Yes No

Unblockable? If No, Multiple drains at least 3 ft apart are required.

& email

For APSP 7– Calculate the Maximum Flow of the pump in this application to determine that the pump will not create a dangerous entrapment condition.

We must calculate the resistance to flow in the pipes and equipment for this particular pool-

gpm **Desired Auxiliary Flow Rate** _____gpm (Auxiliary Flow rate is determined by —

1. Use Calculated TDH (Total Dynamic Head) with manufacturer's certified pump curve.

3. For existing pool- Calculated TDH based on Actual Pressure & Vacuum gauge readings.

tion loss (@6fps) = Est. TDH

Equipment Loss (Filter +Heater) Total estimated (Simplified) TDH

TDH TDH

pump @ TDH determined by method

tlet Make & Mode