Plants Running Cold, Hot & Dry

Denise D. Delaney
Grow Green Landscape Professional Training
March 24, 2015
Hardiness

- Hardiness is genetic
- Each plant has an optimal temperature (and range) needed for growth
- Most plants max out at 86 °F.
- Hardiness can be a function of location
Cold Hardiness

- Ability of a plant to survive winters in a particular area
- Based on the average annual extreme minimum temperature during a 30-year period
- Austin = Hardiness Zone 8
- Average annual minimum temperature 10-20 °F
Percentage of Water in Plants

- Herbaceous plants = 80%
- Woody plants = 60%
- Lettuce = 95%
- Seeds = as low as 2%
- Cactus = 90-94% when hydrated
- Aquatic plants = 95%

Bbc.co.uk
How Cold Temperatures Injure a Plant

- Ice crystals form inside cells
- Water freezes outside the cells, in the intercellular spaces, this may lead to the extreme desiccation of the plant
Dealing with Cold: Antifreeze

Antifreeze or “ice structuring” proteins – found in some fish, insects, plants, fungi and bacteria – attach to the surface of ice crystals to inhibit their growth and keep the host organism from freezing to death.

Ice crystals decorated by fluorescent antifreeze proteins.

Credit: Ido Braslavsky/Ohio University
Dealing with Cold: Drop Leaves

- Deciduous plants drop their leaves before the winter chill sets in effectively shutting off the flow of water between roots and leaves then growing new leaves and water transport cells when warmer weather returns.
Dealing with Cold: Dieback

- Some plants dieback to the ground in winter and re-sprout from their roots
Dealing with Cold: Develop Narrow Transport Cells

Narrower water transport cells, makes the parts of the plant that deliver water less susceptible to blockage during freezing and thawing.
Dealing with Cold: Acclimation (Hardening) & Duration

- Some plants can become more cold tolerant or cold hardy simply by being exposed to near freezing temperatures.
- Some need gradually decreasing temperatures.
- Duration of exposure to cold: Many plants that can survive a short period of exposure to cold may not tolerate longer periods of cold weather.
Dealing with Cold: Annuals

Start growing from seeds when conditions are right
Heat Hardiness Maps

- Based on average number of days each year that a region experiences "heat days" - or temperatures over 86 °F. when plants begin suffering physiological damage from heat.

Zone 1 = less than 1
Zone 12 = 210 or more heat days
Macroclimate (or just Climate)

- The long term weather patterns of a large geographical area

Microclimate

- Condition in a relatively small area, within a few feet above and below the Earth's surface
Microclimate Factor:
Aspect: Hills, slopes and low areas
Microclimate Factor: Structures
Proximity to buildings & heat island effect
Microclimate factor: Bodies of water

- Water has a moderating effect on air temperatures
- High specific heat of water gives it large thermal capabilities
- Plants are somewhat insulated from temperature extremes
Microclimate Factor: Altitude

- The higher the elevation, the cooler the temperature. Each 300 foot gain in elevation results in an average 1 °F drop in temperature.
Lake Austin Altitude
Microclimate Factor: Raised Beds
Microclimate Factor:
Color of the ground

White sand reflects all wavelengths of visible light.

The same amount of solar energy heats up black beaches more than white beaches.

Black sand absorbs all wavelengths of visible light.
Microclimate Factor: Soil type & moisture

- Sandy soil will heat up quicker than clay soil.
- Plants that might otherwise be hardy in your zone might be injured if soil moisture is too low in late autumn and they enter dormancy while suffering moisture stress.
Microclimate Factor: Vegetation

- Shading of soil surface by low shrubs lowers maximum temperatures.
- A layer of leaf litter lowers maximum temperatures even more.
- Greater leaf area and numerous twigs of tall shrubs intercept more light, creating the coolest temperatures.

Temperatures:
- 48°C in bare soil away from shrubs.
- 29°C in litter under low shrub.
- 27°C in soil under low shrub.
- 21°C in litter under tall shrub.
- 23°C in soil under tall shrub.
Humidity

- High relative humidity limits cold damage by reducing moisture loss from leaves, branches, and buds. Cold injury can be more severe if the humidity is low, especially for evergreens.
Ways Plants Deal with Drought

- By avoiding it (annuals)
- Storing and saving water
- Reducing water lost through transpiration
- Adaptations
AVOID DROUGHT CONDITIONS: SHORT LIFECYCLE

Seeds have almost no metabolism, are resistant to environmental extremes; “smart” to wait until specific environmental conditions exist
WATER SAVER:
UNDERGROUND STORAGE

Spider Lily
WATER SAVER: STORAGE IN SUCCULENT LEAVES

Ghost Plant

Sedum
DROUGHT TOLERANCE – REDUCE WATER LOSS:
GRAY, HAIRY LEAVES

Lamb’s Ears

Wooly Stemodia
DROUGHT TOLERANCE - REDUCE LOSS: WAXY LEAVES

Cherry Laurel
DROUGHT TOLERANCE - REDUCE WATER LOSS:
REDUCE LEAF AREA
SMALL LEAVES, LONG LEAVES

Rosemary

Desert Willow
DROUGHT TOLERANCE REDUCE LOSS: SPINES, BITTERNESS, AND/OR TOXICITY (LESS LIKELY TO GET EATEN)

Agave
DROUGHT TOLERANCE MINIMIZE NEED FOR WATER: SUMMER DORMANCY

Buffalograss
DROUGHT TOLERANCE: ADAPT EXTENSIVE ROOTS
DROUGHT TOLERANCE: ADAPT WATER COLLECTION STRUCTURE
DROUGHT TOLERANCE – MINIMIZE NEED FOR WATER: SLOW GROWING
DROUGHT TOLERANCE
MINIMIZE NEED FOR WATER
INCREASED PHOTOSYNTHETIC EFFICIENCY

- Three types of photosynthesis
 - C3 about 85% of land plants
 - C4 about 8% of land plants
 - CAM about 3%
C3 PHOTOSYNTHESIS

- Most plants
- Stomata are open during the day
- Photosynthesis takes place throughout the leaf
- With normal light, under cool and moist conditions C3 plants are more efficient than C4 and CAM plants
C4 PHOTOSYNTHESIS

- Only about 3% of land plants including corn, summer annual plants
- **Grasses and sedges comprise about 79% of the 3%**
- Stomata are open during the day.
- Photosynthesizes faster than C3 plants
- They use water more efficiently so do not need to keep stomata open as much (less water lost by transpiration)
CAM PHOTOSYNTHESIS
(CRASSULACEAN ACID METABOLISM)

- 8% of land plants – many succulents such as cactus & agave
- **Only consume about 10% of the water other plants use**
- Under arid conditions use water more efficiently because stomata open at night when evaporation and transpiration rates are usually lower and (no sunlight, lower temperatures, lower wind speeds, etc.).
- CAM-idle can leave their stomata closed night and day. Allows the plant to survive dry spells, and it to recover very quickly when water is available again
Speaker Contact Information:

Denise Delaney
Watershed Protection Department
City of Austin
(512) 974-2581
Denise.Delaney@austintexas.gov