Development and Implementation of Fuels Reduction Projects

Rich Gray
State Fuels Reduction Coordinator
Assess the Risk
The surface, or smoldering mode of combustion, is represented by the fire triangle.

- Fuel
- Oxygen
- Heat

Normal air contains 21% oxygen, approximately 16% is required for the fire triangle.

- A heat source must also be present.
- A fuel source of a gas, liquid or solid must be present.
Radiation

Burning objects release energy in the form of heat. In most cases, radiant heat from a wildfire will not ignite materials on homes at distances greater than 30 feet from the house.

During prescribed fires in the Urban Wildland Interface, fire professionals carefully monitor the amount of radiant heat being released from the flaming fire front.

Vinyl Siding Damaged From Wildfire
Convection

• Heat transfer through convection tends to move upward. During wildfires, burning materials on the forest floor create convection currents that preheat the leaves and branches of shrubs and trees above the fire.
• Spotting and can result in rapid advancement of the fire.
• Firebrands can also ignite homes directly if they land on flammable roofing or accumulations of leaves or needles in gutters or on roofs.
Conduction carries heat through fuels, such as logs or house walls, and can raise their temperature to ignition points. Heat transfer through conduction can only occur within the same object or between objects that are touching.
Lessons Learned
From this Devastating Fire Event
Primary Mechanism of Home Ignition

• Rolling and Wind Blown Embers

• Direct Fire Travel

• Residual Heat Sources

• No Breaks in Continuous Fuels

• Outbuilding/Vehicle to Structure Damage

• Decks and Fences
Primary Causes

- Flammable Skirting
- Wooden Decks
- Open Foundation
Primary Causes
Unscreened vents in attics
Unenclosed soffits
Wooden Decks
Grass Fuel Model - Fire Behavior Characteristics

- Rapid burnout
- Low intensity fire
- Flame lengths 4 – 12 feet
Shrub Fuel Model - Fire Behavior Characteristics

- Very low to extreme rates of spread are possible
- Flame lengths 4 – 19 feet
- Chemical content in some fuels will permit burning at higher fuel moistures
Timber Fuel Model - Fire Behavior Characteristics

- Range from slow burning to running surface fires
- Occasional torch outs to running crown fire possible
- Flame lengths 1 – 5 feet
Logging Slash Fuel Model - Fire Behavior Characteristics

- Moderate to rapid spread rates
- Moderate to high intensities dependent upon fuel arrangement
- Rolling material frequently ignites fuel below
- Flame lengths 4 – 11 feet
Fire Breaks in Wildland Fuels
Stopping a Disaster
Fuels Project are Designed to Modify the Expected Fire Behavior in a Geographic Area
Who Should Participate in Fire Planning?

- Partners:
 - Local Fire Districts
 - Local and County Governments
 - Texas Forest Service
 - Citizens
 - Neighborhood Associations
 - Federal Land Managers: (USFS, BLM, NPS, USFWS, DOD)
 - Social Service Agencies
 - Community Organizations
 - and others!
“Hey, Pete, what are you doing out here, Pete?
Trying to avoid me, Pete? Huh, Pete? Huh, Pete?”

“Whoever did the controlled burns on Blueberry Hill is to report to my office.”
Fuels Project are Designed to Modify the Expected Fire Behavior in a Geographic Area
Implementation

After all the Paper Work is Completed
Building Shaded Fuel Breaks
Guidelines for Creating Shaded Fuel Breaks

For timbered areas
Follow contour lines
• 30’ wide core min.
 • Large trees pruned up to ten feet
 • Remove low-growing brush species
• 20’-30’ on both sides of core
 • Thin trees to a crown spacing of 10’
 • Remove ladder fuels to a height of 5’-8’
• Break-up concentrated pockets of brush
• Minimum width of 30’ increasing to 100’ on slopes
Area Fuel Treatment Shaded Fuel Break
Guidelines for Creating Shaded Fuel Breaks

For closed canopy woodlands.

Follow contour lines

- 30’ wide core min.
 - Large trees pruned up to six feet
 - Remove shrubs that are 4” in diameter and under 12’ tall
 - As well as dead wood and debris.
 - Retain large trees crowns to promote shade to reduce growth of fine fuels
 - Remove ladder fuels and small saplings under leave trees
- Minimum width of 30’ increasing to 100’ on slopes
Guidelines for Creating Shaded Fuel Breaks

For open woodlands
Follow contour lines
• 30’ wide core min.
 • Large trees pruned up to eight feet
 • Remove low-growing brush, dead wood and grass
 • from within 10 feet of canopy of trees.
Large trees crowns should not overlap.
• Minimum width of 30’ increasing to 100’ on slopes
Prescribe Burns Reduce Fuels
Defensible Space

- **Zone 1**: Remove combustible litter on roofs and gutters and trim tree branches that overhang the roof and chimney.
- **Zone 2**: Prune and remove dead and dying branches from individual and well-spaced clumps of trees and shrubs. Place woodpiles at least 30 feet from the building and store the wood in a vegetation-free zone such as a graveled area.
- **Zone 3**: Reduce fuels by thinning and pruning vegetation horizontally and vertically.
Fuel Modification Diagram

<table>
<thead>
<tr>
<th>A ZONE</th>
<th>B ZONE</th>
<th>C ZONE</th>
<th>D ZONE</th>
<th>Natural Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20’</td>
<td>50’ min.</td>
<td>50’ min.</td>
<td>50’ min.</td>
<td></td>
</tr>
<tr>
<td>setback zone</td>
<td>wet zone</td>
<td>thinning zone</td>
<td>thinning zone</td>
<td></td>
</tr>
</tbody>
</table>

Limit of combustible construction

Edge of graded pad

Irrigated and planted with fire-resistant plant material only

Remove all dead/dying and 50% of live vegetation

Remove all dead/dying and 30% of live vegetation

Limit of Area with Extreme Heavy Vegetation
Select & Use Fire Resistant Materials

- **Roofing:** Metal, tile or fire-resistant roofing
- **Fireplace and Chimneys:** Install spark arrestors
- **Gutters:** Remove plant debris and install screens if possible
- **External Walls:** Stone, brick, stucco or fire-resistant siding
- **Skirting:** Use solid skirting around decks and porches
- **Doors and Windows:** Select products with heat-insulating properties. *(I.e. Tempered glass vs. non-tempered glass.)*
- **Eaves, Soffits, Overhangs and Vents:** Box in eaves and overhangs if possible and screen any vents and openings
- **Decks, Porches, Etc.:** Construct with masonry if possible or enclose areas under wooden structures
- **Fencing Materials:** Consider metal and stone options
- **Driveways and Sidewalks:** Use concrete or gravel walkways as fire breaks instead of wooden platforms
Limb Up
Trees 6 - 10 Feet from the Ground
And in Zones 3 and 4...

...The Mitigation Continues.