

Agenda

- Proposed Environmental Criteria Manual (ECM)
 Changes for Section 1.6.9: SOS Ordinance
 Technical Requirements (90 minutes)
- Break (10 minutes)
- Update on New Option Proposed for Rain Gardens for Single-Family Residential Subdivisions (15 minutes)
- Next steps (5 minutes)

Key Changes to ECM 1.6.9

- 1. Introducing Stormwater Control Measures
- 2. Emphasizing the load-based approach
- 3. Pre-approved controls in the Barton Springs Zone
- 4. Update data tables
- 5. Update the pollutants list
- 6. Implications of updates
- 7. Provide guidance for acceptance of alternative controls
- 8. Introduce the Stormwater Load Analysis Tool (SLAT)

1. Introducing Stormwater Control Measures

- Terminology of "Best Management Practice" is broad and charged
- For Austin's engineered structural or non-structural systems, use:

Stormwater Control Measure (SCM)

Photo: Knox County Conservation District

2. Emphasizing the Load-Based Approach

- Updating the calculation procedure
- Removal efficiency -> Effluent concentration
- No prescribed water quality volume

Example site with treatment trains and calculation variables

2. Emphasizing the Load-Based Approach

3. Pre-Approved Controls in Barton Springs Zone

4. Update Data Tables

Updated Table 1-9

Impervious Cover, IC (%)	Runoff- Rainfall Ratio, R _v	Depression Storage, S _d (in)	Annual Number of Runoff Events, θ	Annual Runoff, V (in/yr)	
0	0.064	0.218	46.0	1.18	
10	0.136	0.180	50.6	2.76	
20	0.208	0.148	54.8	4.55	
30	0.279	0.122	58.5	6.54	
40	0.351	0.100	61.8	8.67	
50	0.423	0.082	64.6	10.9	
60	0.494	0.068	66.9	13.2	
70	0.566	0.056	69.0	15.6	
80	0.637	0.046	70.7	18.0	
90	0.709	0.038	72.2	20.5	
100	0.781	0.031	73.4	22.9	
Austin Total			79.3	31.7	

Updated Table 1-10

Pollutant, i		Pollutant Concentration, $\emph{C}_{\it Ex}$ or $\emph{C}_{\it D}$				
		А	В			
		Site Contains Development (IC ≥ 0%)	Site Completely Undeveloped (IC = 0%)			
COD	mg/L	= 38.9 + 66.6· <i>IC</i>	38.9			
E. coli	CFU/100 mL	25000	8370			
Pb	mg/L	= 0.00428·exp(2.42· <i>IC</i>)	0.00428			
TN	mg/L	2.22	1.19			
TP	mg/L	0.396	0.124			
TSS	mg/L	166	166			
Zn	mg/L	= 0.0236·exp(2.18·IC)	0.0236			

4. Update Data Tables

New Table 1-11: Effluent Concentrations for Approved SCMs

I The second sec	VCW 12	DIC I II. LIIIU	CIII COI	iccittia	10113 101	Approved	. 001113	
Pollutant	nt Unit I	\mathcal{C}_{eff}						
		Infiltration Field		Potentian	Dainwatan	Cadina antatian /	A	
		Non-Infiltrated Fraction	Infiltrated Fraction	Retention Basin	Rainwater Harvesting	Sedimentation/ Filtration	Approved Alternative SCM	
COD	mg/L	= min ($C_{D,COD}$, $C_{eff-1,COD}$)	38.90	43.79	43.79	22.40	Applicant Provided	
EC	CFU/100 mL	= min ($C_{D,Ecoli}$, $C_{eff-1,Ecoli}$)	8370.	11070	11070	4895	Applicant Provided	
Pb	mg/L	=min ($C_{D,Pb}$, $C_{eff-1,Pb}$)	0.00428	.00831	.00831	.00574	Applicant Provided	
TN	mg/L	= min ($C_{D,TN}$, $C_{eff-1,TN}$)	1.19	1.42	1.42	1.07	Applicant Provided	
TP	mg/L	= min ($C_{D,TP}$, $C_{eff-1,TP}$)	0.124	0.224	0.224	.0990	Applicant Provided	
TSS	mg/L	= min ($C_{D,TSS}$, $C_{eff-1,TSS}$)	166	134	134	20.6	Applicant Provided	
Zn	mg/L	= min ($C_{D,Zn}$, $C_{eff-1,Zn}$)	0.0236	.0453	.0453	.0230	Applicant Provided	
	CONTRACTOR OF	E CONTRACTOR OF THE PARTY OF TH						

New Table 1-12: Bypass Concentrations

STATE AND STATE OF THE PARTY OF	Pollutant Unit		SCM 1 Bypass Con	SCM 2 Bypass Concentration, C _{bv.2}		
			Offline Control	Online Control		
9	COD	mg/L	= exp[4.493-0.510(<i>WQV</i>)]	= exp[4.916-0.545(<i>WQV</i>)]	= C _{eff-1} ,Table 1-11	
50000	EC	CFU/100 mL	= exp[10.18-0.465(<i>WQV</i>)]	= exp[10.79-0.624(<i>WQV</i>)]	= C _{eff-1} ,Table 1-11	
9000	Pb	mg/L	= 0.001·exp[2.882- 0.489(<i>WQV</i>)]	= 0.001·exp[3.522- 0.529(<i>WQV</i>)]	= C _{eff-1} , Table 1-11	
	TN	mg/L	= exp[0.957-0.267(<i>WQV</i>)]	= exp[1.322-0.236(WQV)]	= C _{eff-1} ,Table 1-11	
	TP	mg/L	$= \exp[-0.613 - 0.469(WQV)]$	$= \exp[-0.223-0.400(WQV)]$	= <i>C_{eff-1}</i> ,Table 1-11	
Ž	TSS	mg/L	= exp[5.290-0.934(<i>WQV</i>)]	= exp[5.862-0.765 (<i>WQV</i>)]	= C _{eff-1} ,Table 1-11	
CHARLE	Zn	mg/L	= 0.001·exp[4.610- 0.442(WQV)]	= 0.001·exp[5.200- 0.531(<i>WQV</i>)]	= C _{eff-1} ,Table 1-11	

5. Update the Pollutants List (Pollutants for load calculations only)

NEW LIST	OLD LIST
E. coli [added¹]	Fecal Coliform [deleted ¹] Fecal Streptococci [deleted ¹]
Chemical Oxygen Demand	Chemical Oxygen Demand
Total Lead	Total Lead
Total Nitrogen	Total Nitrogen
Total Phosphorus	Total Phosphorus
Total Suspended Solids	Total Suspended Solids
Total Zinc [substitute]	Cadmium [substituted]
	Biochemical Oxygen Demand [deleted ¹]
	Total Organic Carbon [deleted ²]

- Code already changed
- Will require a code change

6. Implications of Updates

6. Application to Random Example Sites

Old and New Water Quality Volumes for Example Sites

Site ID	Site Name
1	Austin Waldorf School
2	McMeans Store
3	Muhich Office Warehouse
4	Hilltop Park
5	Dick Nichols District Park
6	Heights at Loma Vista Phase 1 - Pond 1
7	Heights at Loma Vista Phase 1 - Pond 2
8	Oak Hill Branch Library
9	HEB #23 at William Cannon/Brodie
10	The Shops at Arbor Trails (Costco)
11	Williamson Pointe Office Warehouse
12	Parkway Village

Costco at William Cannon & MoPac

Drainage Area = 83.4 Ac
Drainage Area Impervious Cover = 49.6%
Drawdown Time = 60 hrs
Has Splitter

HEB at Brodie & William Cannon

Drainage Area = 12.0 Ac
Drainage Area Impervious Cover = 70.8%
Drawdown Time = 71 hrs
Has Splitter

Analysis from SLAT Output

7. Alternative Controls

- Alternative controls allowed
- Applicant provides <u>effluent concentrations</u> from accepted testing protocol
 - ABET approved university study
 - Peer-reviewed journal article
 - Washington State TAPE protocol
 - Technology Acceptance Reciprocity Partnership (TARP) protocol
- Must still prove that effluent pollutant loads meet non-degradation requirements

8. Introducing SLAT

Stormwater Load Analysis Tool for simple treatment trains

Advanced design or stormwater routing would require engineering

analysis (eg. SWMM)

Open SLAT

SLAT: Stormwat	1/2	
Site Name: Parkway Village Tract 107	By: MRA	Date: 6/12/2014

RESULTS: COMPLIANCE TABLE

POLLI	ITANT	DEVELOPED LOAD, WITH CONTROLS				EXISTING	LOAD EQUIV.	COMPLIES?
POLLUTANT		Drainage Area A	Drainage Area B	Drainage Area C	Total	LOAD	FACTOR	CONTRIES
COD	lbs/yr	7.55E+01	0.00E+00	0.00E+00	7.55E+01	1.35E+02	0.56	YES
E. coli	10^6 MPN/yr	1.09E+05	0.00E+00	0.00E+00	1.09E+05	1.32E+05	0.83	YES
Pb	lbs/yr	1.57E-02	0.00E+00	0.00E+00	1.57E-02	1.49E-02	1.05	NO
TN	lbs/yr	3.41E+00	0.00E+00	0.00E+00	3.41E+00	4.13E+00	0.82	YES
TP	lbs/yr	4.92E-01	0.00E+00	0.00E+00	4.92E-01	4.31E-01	1.14	NO
TSS	lbs/yr	7.81E+01	0.00E+00	0.00E+00	7.81E+01	5.76E+02	0.14	YES
Zn	lbs/yr	9.59E-02	0.00E+00	0.00E+00	9.59E-02	8.18E-02	1.17	NO

NOT COMPLIANT

0.00

Original Option Proposed for Rain Gardens for Single-Family Residential Subdivisions

- Proposed in April 4, 2014 WPO meeting:
 - 1. City of Austin to inspect & provide functional maintenance
 - Homeowners may supplement maintenance, add additional native landscaping
 - 3. Must be located in the right-of-way, dedicated common area, or within a drainage easement that is accessible by standard maintenance equipment from the right-of-way
 - Must treat clusters of single-family residences (i.e., not individual lots)
 - 5. Cannot be located in backyards or fenced-in yards
- Moving forward with this option.
- And offering a second option (see next slide)

New, Additional Option for Rain Gardens for Single-Family Residential Subdivisions

- Will draft pre-July 14 ECM stakeholder meeting:
 - 1. Private owner to provide maintenance
 - 2. The City of Austin will inspect every 3 years—and potentially later on an as-needed, complaint-basis
 - 3. OK to install on individual single-family lots
 - 4. Cannot be located in backyards
 - 5. Must verify at point-of-sale of property that exist and are in good working order (like septic systems); provide literature re: maintenance
- Will schedule stakeholder brainstorming session
- Pilot: Want this to go well; good design and installation will be critical

WPO Phase 2 Schedule, 2014

Phase 2 Kickoff	Jan. 22
Perviousness: Introduction	Feb. 21
Perviousness: Porous Pavement (part 1)	Mar.07
Porous Pavement (part 2), Artificial Turf & Rainwater Harvesting	Mar. 21
Rain Gardens for Single-Family Residential	Apr. 04
Beneficial Use of Stormwater: Potential Policy Approaches	
Introduction/National Examples	Apr. 18
Beneficial Use of Stormwater: Follow-Up Discussion	May 30
New Criteria for SOS Ordinance Compliance/ECM 1.6.9	June 13
RSMP-Plus (Regional Stormwater Mgmt. Program) July 1	1 or 25?
Next Steps	TBD/Fall

