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ABSTRACT 

In this report, we summarize the current status of the Jollyville Plateau salamander (Eurycea tonkawae) drawing 

upon data gathered from two different survey methods, count surveys and capture-mark-recapture (CMR) surveys.  

We examined short term trends in count data from 2008-2010 in the context of the 2008-2009 drought at thirteen 

monitoring sites, and long term trends at eight of those sites from 1996-2009.  We also analyzed CMR data for 

three sites from 2007-2009 to estimate detection probability, population size, temporary emigration, and survival.  

Regarding overall status of the species, the analysis of long-term count data indicated that urban sites have a 

significant declining population trend overall, compared to rural sites.  However, our ability to detect salamanders 

when they are present (detection probability) varies among sites and over time, and should be accounted for when 

interpreting count data.  With respect to the response of E. tonkawae to the drought, we detected significantly 

lower total and juvenile salamander counts during 2008 through part of 2009, in comparison to post-drought 

counts.  At CMR sites, population size did not significantly decrease during the longest dry period at each site, and 

reproduction was also observed at one site during this period.  These results indicate a resiliency of E. tonkawae to 

dry surface conditions caused by drought.   

INTRODUCTION 
 

Broad scale amphibian declines have been recognized as a major conservation issue for several decades, 

the common denominator among them being threats of anthropogenic origin (Blaustein 1994; Blaustein 

& Wake 1990).  The Edwards Plateau of central Texas is home to many endemic Eurycea salamanders 

(Chippindale 2000; Chippindale et al. 2000; Hillis et al. 2001), but is also an area that has experienced 

rapid urbanization around major cities such as Austin and San Antonio.  These species have very 

restricted distributions, and the health of the ecosystems they inhabit is threatened by human activities 

(Chippindale & Price 2005).   

 

Eurycea tonkawae (the Jollyville Plateau salamander) is a neotenic salamander, endemic to springs, 

headwater streams and caves in northwest Austin, Texas and surrounding areas (Bowles et al. 2006; 

Chippindale et al. 2000).  Threats to E. tonkawae, due to the rapid urbanization of Austin, were 

identified even before the species was formally recognized (Chippindale et al. 2000); however there was 

a dearth of quantitative information on these threats and the status of the species (Cole et al. 1995).  To 

address this knowledge gap, the City of Austin (COA) initiated a monitoring program from 1996-1998 at 
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nine sites to identify the physical, chemical, and biological factors that potentially affect the distribution 

and abundance of E. tonkawae (City of Austin 2001).  Because its range encompasses areas with two 

very distinct land-uses, urban development and biological preserves (Figure 1), sites were surveyed in 

rural, developing, and developed spring watersheds.  Sites within urbanized watersheds were found to 

have lower salamander densities, compared to those in rural areas (Bowles et al. 2006; City of Austin 

2001).  Subsequent studies have identified declining trends in counts at some urban sites between 1996 

and 2006 (O’Donnell et al. 2006; O’Donnell et al. 2007b; Turner 2003).  Due to low count-based 

estimates of population size, E. tonkawae populations in urbanized watersheds have high predicted 

probabilities of extirpation (Bendik 2008).  Depressed populations are more vulnerable to extirpation 

from the effects of random events, such as demographic and environmental stochasticity (Bull et al. 

2007; Drake & Lodge 2004; Morris & Doak 2002).  The primary threat to E. tonkawae has been cited as 

degraded water quality due to pollution in urbanized watersheds (Bowles et al. 2006; Chippindale 2000; 

O’Donnell et al. 2007b).  Degraded water quality and other threats have prompted a “warranted but 

precluded” ruling for protection under the Endangered Species Act by the U.S. Fish and Wildlife Service 

(USFWS 2007), and it currently remains a candidate species. 

 

Here, we summarize the current status of the Jollyville Plateau salamander drawing upon data gathered 

from two different survey methods, count surveys and capture-mark-recapture surveys.  Most of the 

previous research on the conservation status of E. tonkawae relied upon count data (Bendik 2008; 

Bowles et al. 2006; City of Austin 2001; O’Donnell et al. 2006; O’Donnell et al. 2007b; Turner 2003), 

whereby salamanders are counted as they are observed within a given area.  These studies comprise the 

bulk of the available knowledge on the ecology of E. tonkawae, and form the basis of its candidate 

species status (USFWS 2007).   

 

Count data have been collected since late 1996 with variable frequency and number of sites.  For this 

reason, count data are analyzed here in several distinct groups.  Most count data from 2008-2010 were 

collected on a regular basis, at approximately 3 month intervals.  We report results from this period at 

13 monitoring sites in the context of the 2008-2009 drought, and compare drought and post-drought 

survey results to test the hypothesis that juvenile recruitment and total counts differ between these two 

periods. 

 

Data from two and three year intervals (as above) are less useful for understanding temporal trends, 

because natural variation in populations from one year to the next may confound any long-term signal.  

To estimate differences in long-term trends between urban and rural E. tonkawae populations, we use a 

Poisson regression of count data collected from eight long-term monitoring sites, from 1996 through 

2009.  This is a novel approach to analyzing E. tonkawae count data that tests the hypothesis of a 

significant difference between urban and rural population trends by comparing trends at sites with high 

and low levels of impervious cover.  We use a hierarchical model that can incorporate different 

covariates (such as impervious cover), and demonstrate the utility of Bayesian modeling for analyzing E. 

tonkawae count data.  Finally, we examine whether salamander total counts and juvenile counts are 

higher in spring and summer months, a pattern noted by Bowles et al. (2006).  Their study only included 
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data for a two year period, and we extend this include all available data from 1996 through 2010 to 

statistically test this hypothesis. 

 

While count data has also been commonly used to assess population trends in many other studies (e.g. 

Link & Sauer 1998), it has been widely recognized that potentially unrealistic assumptions are made 

when count data are interpreted as indices for population size (Bailey et al. 2004b; Dodd & Dorazio 

2004; Hyde & Simons 2001).  For example, it is assumed that detectability remains constant over time, 

that there is a linear relationship between counts and population size (Hyde & Simons 2001).  Not 

accounting for detectability can lead to a compromised monitoring scheme (Bailey et al. 2004b; Pollock 

et al. 2002; Yoccoz et al. 2001).  

 

Capture-mark-recapture (CMR) surveys, a recent addition to the E. tonkawae monitoring program 

(O’Donnell et al. 2007a), incorporate estimates of detectability that are missed by count surveys.  An 

eight month CMR study was conducted in 2007 in the Bull Creek watershed in order to gather baseline 

data and assess the future impact of a proposed water treatment plant in upper Bull Creek on 

populations of E. tonkawae (O’Donnell et al. 2007a).  The location of this plant was eventually moved, 

and CMR monitoring has continued on a less intensive basis through 2009.  Although fewer surveys 

were conducted from 2008 through 2009 in comparison to the initial 2007 study due to resource 

limitations and drought conditions, they incorporate additional temporal variation and allow for 

comparisons of vital rates before and after the 2008-2009 drought. 

 

In order to examine spatial and temporal variation in detection probabilities, and estimate vital rates, 

we reanalyze CMR data from the initial CMR study (O’Donnell et al. 2007a), in combination with recent 

results.  In addition to modeled estimates of survival, temporary emigration (movement in and out of 

the study site between surveys), population size and detection probability (as included in O’Donnell et 

al. 2007), we also calculate the “effective capture probability” (Kendall 1999), an estimate of detection 

probability that is commonly reported in other studies of plethodontid salamanders (Bailey et al. 2004a; 

Smith & Petranka 2000).  Effective capture probability is analogous to what might be expected as a 

proportion of the population observed during a count-based survey.  Patterns in detection probability 

from the CMR study have implications for how count data are interpreted.  This is critical, because count 

data are the predominant source of information available for E. tonkawae. 

 

Finally, we compare estimates of population size pre and post-drought to determine what effect 

prolonged dry surface conditions had at two CMR sites.  These CMR sites experienced prolonged periods 

without surface water, forcing salamanders to either follow the retreating groundwater as springs were 

drying, or face desiccation on the surface.  Surveys were conducted before, during and after the 

drought, allowing a unique opportunity to study how a long dry spell impacts E. tonkawae populations.  
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Figure 1.  Land use practices within drainage basins inhabited by the Jollyville Plateau salamander (E. tonkawae).   

STUDY AREA 
Sites included in this study occur in five watersheds (Bull Creek, Walnut Creek, Brushy Creek, Shoal 

Creek, and Lake Travis) in the Jollyville Plateau and surrounding area of Travis County, Texas.  However, 

the trend analysis is restricted to sites within Bull, Shoal and Lake Travis watersheds because the 

remaining sites do not have long enough time series of data to predict a biologically meaningful trend.  

The CMR study was conducted at three sites, two occurring in the Bull Creek watershed, the other 

within Lake Travis watershed. 

 

Sites were classified as urban or rural based on the percentage of impervious cover within their 

respective drainages following designations of USFWS (2007; see METHODS).  Percent of impervious 

cover (IC) was calculated for each site used within the trend or CMR data analysis.  Table 1 shows IC 

based on land use data (Bendik 2008) for the corresponding drainage basin of each site (Figure 2).  Of 

the count survey sites, only two of these can be considered rural (Franklin and Wheless, IC <5%), while 

for the remaining six sites, IC ranges from 18-46%, indicating high levels of urbanization (Table 1).  All 

three mark-recapture sites are part of the Balcones Canyonland Preserve, and are considered rural (IC 

<1%; Figure 2, Table 1). 
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Table 1.  Summary of sites surveyed.   Impervious cover percentages are based on land use.  For additional 

information on impervious cover calculations, see Bendik (2008). Impervious cover category was assigned 

following the same criteria as USFWS (2007). For the trend analysis, high and very high groups were combined. 

nc=not calculated; trend=Poisson regression of 1996-2009 count data; CMR=capture-mark-recapture analysis of 

2007-2009 data; count=analysis of 2008-2010 count data. 

Site Site # 
2006 

Impervious 
Cover (%) 

Analysis 
Impervious  

Cover 
Category 

 
Watershed 

 

Franklin 349 1 trend low Bull   

Trib 3 926 26 trend high Bull   

Trib 5 1164 18 trend high Bull   

Trib 6 151 22 trend high Bull   

Spicewood 930 46 trend very high Shoal   

Stillhouse  927 22 trend high Bull   

Tanglewood  928 34 trend high Bull   

Wheless  1045 <1 CMR/trend low Lake Travis  

Lanier  3963 <1 CMR low Bull  

Ribelin  4035 <1 CMR low Bull  

Balcones DP Spr 445 nc count nc Walnut  

Upper Ribelin 4184 nc count nc Bull  

Baker Spring 3959 nc count nc Lake Travis  

Barrow Hollow 929 nc count nc Bull  

Troll Spring 4457 nc count nc Bull  

Avery Deer Spr 1355 nc count nc Brushy  
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Figure 2.  Site locations (star or asterisk) and their associated drainage basins (grey borders) used for calculating 

percent impervious cover.  Shaded grey areas indicate development density.   

 

There are some differences in natural habitat which should be considered when directly comparing 

survey results among sites.  For example, the Tanglewood site (928) is bedrock dominated, while 

Franklin (349) and Spicewood Spring (930) have abundant cobble and gravel substrate.  Additional 

information on site characteristics can be found in O’Donnell et al. (2007a) and City of Austin (2001). 

METHODS 

SURVEYS 

 

Count surveys have varied in frequency since monitoring of E. tonkawae populations began.  In general, 

surveys were on a monthly or semi-monthly basis from late 1996 through 1998 (City of Austin 2001), 

and varied in survey frequency thereafter (O’Donnell et al. 2007b).  From 2008 to 2009, most sites were 

surveyed quarterly, with the exception of Trib. 3, Avery Deer Spring, Troll Spring, which were surveyed 

once a year.  Quarters are three month periods starting in January and denoted QI, QII, QIII, and QIV.  
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Most surveys were conducted during the beginning of each quarter, so that consecutive surveys at the 

same site would have approximately the same time interval (3 months) between them.   Counts were 

conducted in a fixed survey area at each site by searching under all cover objects, and noting the size 

class of the salamander (≤1 inch, 1-2 inches, ≥ 2 inches).  Double counting of individuals was minimized 

by using a drive survey technique, whereby all observers search together in a line, moving from 

downstream to upstream, flushing salamanders downstream as they are counted.  During each survey, 

specific conductance (SpC), dissolved oxygen, pH, and temperature of the water were measured. 

 

Capture-mark-recapture surveys were conducted monthly from March through October, 2007 at three 

sites: Lanier, Wheless and Ribelin.  Subsequently, surveys were conducted less frequently through 2008 

and 2009, at two of the three sites (Wheless and Lanier).  The two surveys conducted at Wheless (Mar. 

2008 and Dec. 2009) encompass a drought period, when the spring was dry for most of the time in 

between.  Surveys were conducted at Lanier during the following months: Mar. 2008; Mar., June, and 

Dec. 2009.  Surface conditions were generally wetter at Lanier Spring during this period than at Wheless 

Spring, although site conditions were dry or mostly dry for the latter half of 2008 at Lanier.  CMR data 

were collected using Pollock’s robust design (Pollock 1982), whereby salamanders were captured and 

marked (or identified) for several consecutive “secondary sessions,” (= three days in this study) during 

which the survey area is presumed to be closed to migration, births and deaths.  Within this group of 

surveys, population size and detection probability are estimated.  Each group of secondary sessions is 

referred to as a “primary period,” between which populations are treated as open, and estimates of 

survival and temporary emigration can be obtained.  Additional details on the survey method and study 

design can be found in O’Donnell et al. (2007a).   

 

Table 2.  Primary periods used in CMR analyses. *March 2007 was dropped from Wheless analysis; see Results.  

Ribelin was not sampled after 2007 due to resource limitations. Although quarterly surveys were planned, 

sampling was sparse for 2008 and 2009 due to dry site conditions. 

 
Sample Periods  

 
Site 2007 2008 2009 total 

Lanier 
March-October 

(monthly) 
March 

March, June, 
December 

12 

Wheless* 
April-October 

(monthly) 
March December 9 

Ribelin 
May-October 

(monthly) 
none none 6 
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DATA ANALYSIS 

COUNT DATA 

 

Juvenile recruitment (i.e. counts) and total counts were compared between two seasons, 

spring/summer and fall/winter.  We refer to juvenile recruitment simply as any juvenile (<1”) being in a 

free-living state (i.e. has hatched).  Counts from all available data (1996-2010) were summed by site, 

date and size class.  An average was taken for two groups among all winter/fall (Oct. through Mar.) and 

spring/summer (Apr. through Sept.) months to generate a balanced dataset.  Those with fewer than 10 

records per site/season combination were removed from the analysis.  This resulted in datasets for total 

counts and juveniles containing the following sites: 151, 349, 445, 926, 927, 928, 929, 930, and 1164.  

Differences in average count by site/season were tested for significance using a non-parametric 

Wilcoxon signed rank test in SAS 9.1 (SAS Institute, Inc.) 

 

To compare juvenile recruitment rate and total salamander count during and after the drought, results 

from quarterly monitoring (sites 151, 349, 445, 926, 927, 928, 929, 930, 1164, 4184), and yearly 

monitoring (sites 1355 and 4457) were summed across 5 survey-quarters each of drought (QIII 2008- QIII 

2009) and post-drought (QIV 2009- QIV 2010) conditions.  Drought and post-drought counts were also 

tested for a significant difference using a non-parametric Wilcoxon signed rank test in SAS 9.1 (SAS 

Institute, Inc.) because differences were not normally distributed (univariate procedure; Shapiro-

Wilk, P<0.001). 

 

Trend analyses (described below) were used to evaluate the status of eight E. tonkawae populations 

using results from direct count surveys conducted periodically from 1996-2009 (other summaries are 

available in: Bendik 2008; City of Austin 2001; O’Donnell et al. 2006; O’Donnell et al. 2007b; Turner 

2003).  These count data pose challenging problems for statistical analysis.  Counts are highly erratic and 

time series for most long term monitoring sites have missing data, some as high as 4 years between 

visits.  Perhaps most challenging is that the time series lengths are fairly short, whereas longer time 

series are generally preferable (Hovestadt & Nowicki 2008).  These problems have resulted in very wide 

confidence intervals for estimates of population growth rate in previous analyses of E. tonkawae count 

data that have made accurate assessments of population status and viability difficult (Bendik 2008).   

 

Although count surveys have been conducted at several different study sites to assess the status of 

Jollyville Plateau salamanders since 1996, most previous analyses of these data relied on simple linear 

regression analysis of the raw data to predict trends.  However, a simple linear regression using raw data 

requires some assumptions that may not be supported (e.g., homoscedasticity), particularly when 

dealing with count data.  Several alternative methods to estimate population size trends are used here 

in an effort to provide an overall status assessment for E. tonkawae.   

 

First, count data were summarized in program R v 2.11.0 (R Core Development Team 2010) using a 

general additive model (GAM) smoothing method to present a trend (package mgcv 1.6-2) of counts, 



9 
 

including all size classes, summed by site and survey (all code is provided in Appendix A).  The GAM 

models provide a summary of the raw counts at each site, but are not as useful for hypothesis testing. 

 

These data were also analyzed using loglinear Poisson regression, accounting for overdispersion of the 

Poisson distributed log-counts, to test the hypothesis of a difference in trend between sites with low 

and high impervious cover: 

 

jtcjt tt =   )()log( *

.
 

 

Here, λt is the expected count at time t (in months since beginning of study), αj is a constant intercept of 

site j, βc is the slope of impervious cover group c, and ε is the overdispersion effect for site j at time t.  

Change is indexed relative to base month t*.  This model incorporates a different intercept as a random 

effect for each site and fits a common slope among sites within the same impervious cover category.  

Using a common slope for sites from the same group is a way of summarizing the overall population 

trend for a given group.  The random site-effects parameterization of the model (i.e. site-specific α 

levels) accounts for inherent differences in the baseline population size due to differences (natural and 

by study design) between sites (e.g. see STUDY AREA).   

 

The Poisson model was fit to data from each site using a Bayesian analysis implemented in the program 

OpenBUGS (Thomas et al. 2006).  All models implemented in OpenBUGS were adapted from Sauer et al. 

(2010).  In a Bayesian analysis, all model parameters are treated as random variables.  Poisson models 

are useful for modeling count data because counts are ‘‘discrete, positive valued, and *typically+ exhibit 

strong mean-variance relationships’’ (Royle et al. 2002 as cited in Thogmartin et al. 2004).  Poisson 

regressions have been used in numerous studies of count-based population data (e.g. Link et al. 2006; 

Royle & Nichols 2003; Sauer & Link 2002; Thogmartin et al. 2004, 2007).  

 

The overall trend, i.e., the geometric rate of change in counts since the inception of this study, was 

calculated as  

 

 [t] /[1]
)1(

ff = B
  t 

, 

               

 

where f is the expected average count at the initial and final time t.  The derived parameter B provides a 

single summary estimate of the average rate of change for all monitored populations combined 

between 1997 and 2009.  We grouped sites by impervious cover (IC) category (low, moderate, high, very 

high), as defined in USFWS (2007) from 2006 estimates of IC (Table 1) based on land use data.  However, 

there were no sites in the  moderate level IC, and only a single very high site, so sites were categorized 

as either low (rural) or high to very high (urban), to compare estimates of B (Table 1). 

 

Water quality degradation, which is linked to impervious cover, has been cited as a potential cause of 

decline in Jollyville Plateau salamander populations (USFWS 2007).  To represent overall water 
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chemistry differences between sites that may be associated with urbanization, the average specific 

conductance (SpC) for each site was incorporated as a covariate.  Additionally, average percent IC across 

all site-years during the study was calculated using combinations of IC estimates by land use type and 

Travis County Appraisal District records (Herrington 2008).  Average IC and SpC (Table 3) were imposed 

as covariates on the intercept α, as 

 

  )()( ** ssii j

s

j

i

j    , 

 

where µα is a site specific intercept, and βi
 and βs

 are slopes for IC and SpC, respectively.  Parameters i 

and s are the average IC and SpC respectively, at site j, and i* and s* represent the averages across all 

sites.  These parameters were scaled to facilitate computation by subtracting the mean from each 

original value.   Although averaging these covariates is an over simplification (because IC and SpC have 

increased over time in some watersheds), it nevertheless allows us to determine whether these are 

important covariates in predicting the base population level, independent of the population trend.  This 

covariate model was analyzed separately from the preceding model, although the overall model 

structure was similar (Appendix A). 

 

Standard, non-informative priors (Gilks et al. 1996) were used for the Bayesian analyses in OpenBUGS.  

The inverse variances were assigned gamma distributions with a mean =1 and variance = 1000.  

Parameters α, β, βi, βs, and µα were assigned normal distributions with mean = 0 and variance = 10002.  

The overdispersion parameter was assigned a normal distribution with mean =0 and variance = σ2.  

Burn-in (number of iterations that are thrown out) was set at 50000 Markov chain Monte Carlo 

generations, and four chains were run for an additional 200,000 iterations.  Convergence of parameter 

estimates was evaluated by the BGR (Brooks-Gelman-Rubin) statistic implemented in OpenBUGS.  Full 

descriptions of both Bayesian models and corresponding OpenBUGS code are provided in Appendix A. 

 

Table 3.  Average impervious cover (% of land within drainage) and average specific conductance (µS/cm) 

estimates used in covariate model.  Site ID refers to the dummy variable assigned to each site in the analysis (see 

Appendix A). 

Site Site # Site ID 
1996-2009 

Average 
IC 

 
1996-2009 

Average 
SpC (µS/cm) 

Category   

Franklin 349 7 0.04  550 Rural    

Trib 3 926 3 0.13  795 Urban    

Trib 5 1164 6 0.11  631 Urban    

Trib 6 151 1 0.13  941 Urban    

Spicewood 930 2 0.30  862 Urban    

Stillhouse  927 4 0.15  929 Urban    

Tanglewood  928 5 0.18  841 Urban    

Wheless  1045 8 0  625 Rural    
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CAPTURE-MARK-RECAPTURE DATA 

 

CMR data were analyzed with the program MARK version 6.0 (White & Burnham 1999).  Although 

estimates of detection probability can be obtained with closed population models, it is confounded by 

temporary emigration and can bias estimates of population size (Kendall et al. 1997).  Pollock’s robust 

design allows for accounting of temporary emigration parameters, and is used to examine a suite of 

models in order to test hypotheses about variation in detection probability and the movement of 

salamanders in and out of the study area.  All analyses were conducted using the “Robust design with 

closed captures” option in MARK.   A single dataset was also fit using the Huggins method (Huggins 

1989), which conditions out estimates of N (population size), and calculates N as a derived parameter.  

However there were no major differences between the two methods, and so the results reported here 

are from the “standard” closed population estimation method as implemented in MARK.   

 

Median  ̂ was estimated in MARK for each model to assess goodness-of-fit (GOF) for a general full time 

varying Cormack-Jolly-Seber model (CJS; Pollock et al. 1990; Lebreton et al. 1992).  Since there is no 

current way to test GOF for a robust design, the data were reduced to an open design CJS model, where 

all secondary periods were collapsed for each primary period into a single event.  This is analogous to 

how the robust design handles survival and temporary emigration estimation.  Akaike’s Information 

Criterion corrected for small samples and overdispersion (QAICc) was used to select for the best model.  

Occasionally, MARK was unable to fit parameters reliably, so parameter estimates were only included if 

the estimate was greater than its standard error.     

 

A variety of models were fit to the data that incorporated time-variability or constant parameterizations 

of φ (survival),    (probability being off the study area given it was not present during prior trapping 

session),     (probability being off the study area given that it was present during prior trapping session), 

p (conditional capture probability), and c (conditional recapture probability) for Lanier, Ribelin and 

Wheless separately.  Population size (N) was estimated for each primary period in all models.  

Additionally, models with no temporary emigration (γ=0), random temporary emigration1 (γ’ = γ”), 

Markovian temporary emigration (γ’ ≠ γ”), and with p=c (recapture rate is equivalent to capture rate) 

were also evaluated.  Both p and c were allowed to vary within periods or set constant within periods.  

Models with full time varying detection [i.e. p(t,t) c(t,t)] were constrained on the last p for each session 

as p=c to enable identifiability of all parameters.  Similarly, fully time varying survival and temporary 

emigration models were constrained on the last γ, such that γt= γt-1 to allow identifiability of all survival 

parameters.  Table 4 contains an explanation of notation and the possible combination of parameters.  

This method resulted in a total of 60 possible models tested for each dataset.  Parameter estimates 

were obtained from model weighted averaging using QAICc weights (unless otherwise specified) in 

order to account for uncertainty in the model selection process.  

  

                                                           
1
 Random temporary emigration means that the location of an individual during the previous primary period has 

no bearing on its location during the current period.  Markovian emigration is when the current location of the 
animal depends on the last location.   
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Table 4. Model notations used.  A total of 60 models were tested using two possible parameterizations for survival, 

six for conditional capture and recapture probability, and five for temporary emigration.   

Parameters Type of Time Variation 

  

Time 

invariant 

Between 

Periods 

Within and Between 

Periods 

Monthly Survival φ (.) φ (t) NA* 

Conditional Capture (p) and Conditional Recapture (c) Pr    

     Capture Pr = Recapture Pr p(.)=c(.) p(t)=c(t) p(t,t)=c(t,t)   

     Capture Pr ≠ Recapture Pr p(.) c(.) p(t) c(t) p(t,t) c(t,t) 

Temporary Emigration    

     Random Temporary Emigration ( γ’ = γ”) random (.) random (t) NA 

     Markovian Temporary Emigration ( γ’ ≠ γ”) Markov (.) Markov (t) NA 

     No Temporary Emigration ( γ’ = γ” = 0) no mov NA NA 

 

Parameter estimates generated by the best random temporary emigration models for each site, 

according to the lowest QAICc score, were used to calculate effective capture probabilities.  Effective 

capture probability ( ̂  ) differs from the conditional capture probability ( ̂ ).  Conditional capture 

probability represents the probability of capture, given an individual is present in the sampled area.  

Effective capture probability is the probability of capture given an individual is present in the 

superpopulation (the population including both observable and unobservable individuals, i.e. those that 

have temporarily emigrated), regardless of its presence in the sampled area (Kendall et al. 1997).  Under 

the completely random emigration model, effective capture probability was calculated as  ̂  ( )  

(   ̂( )) ̂  (Kendall et al. 1997; Bailey et al. 2004a), where   ̂  is the composite of conditional capture 

probabilities during primary period t, or the average conditional capture probability among secondary 

samples.  Estimates of effective capture probabilities were calculated using a composite  ̂  to examine 

temporal trends in detection probability and compare site averages.  We also calculated effective 

capture probabilities on a per-sample basis, so that estimates would be analogous a single-count survey 

and other estimates of detection probability in salamanders. 

RESULTS 

COUNT SURVEYS 

We confirmed previous observations (Bowles et al. 2006) of higher counts during the spring and summer 

months using a larger, 13-year dataset.  Both total (signed rank W=21.5, P=0.008) and juvenile (W=22.5, 

P=0.004) counts were significantly higher by site, on average, during the spring/summer than the 

winter/fall season.  Looking at a subset of this data (from 1997-2000), where surveys were conducted on 

a monthly or bi-monthly basis, average total counts and juvenile counts (≤1”) were highest during the 

month of April overall (Figure 3).  In contrast, the month of December had the lowest mean total and 

mean juvenile counts (Figure 3).   



13 
 

 

The 2008-2010 count data also show pronounced effects of the 2008-2009 drought on salamander 

counts.  Total counts for the 5-quarter period during the drought were significantly lower than total 

counts in the following 5-quarter period, when site was accounted for (W=33.5, P=0.005).  Recruitment 

was also significantly greater during post-drought conditions (W=31.5, P=0.003).  Although counts were 

higher on average for 2010 (post-drought), zero salamanders were observed on at least one occasion at 

two sites (Trib. 5 and Tanglewood; Figure 4).  These results are consistent with a pattern of very low 

salamander density at these sites (Figure 4g and 5h; O’Donnell et al. 2007b).  In contrast, salamanders 

were observed at Balcones District Park Spring for the first time since 2005 (Figure 4a).  Although there 

was only a total of six salamanders observed from three surveys conducted in 2010, this site has a very 

small amount of surface habitat (<9 sq. m).  In comparison, counts continue to be high at Franklin and 

Upper Ribelin (Figures 4c and 4d), which are both low IC “rural” sites (Table 1).   

 

 

Figure 3.  The average monthly size class distribution of E. tonkawae observed during count surveys for seven sites 

between 1997 and 2000. 
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Figure 4.  Quarterly Count Summary.  Below are the quarterly results of count surveys conducted at ten sites between 2008 and 2010.  Total salamander 

counts are partitioned by size class: ≤1 inch, 1-2 inches, and ≥2 inches.  Each graph has the same x-axis and secondary y-axis, but different primary y-axes (left 

side) are scaled by salamander count.  Missing data are noted on each graph, and it is noted when surveys were skipped due to an absence of flowing water.  

Otherwise, blanks on the chart represent survey totals of zero salamanders.  The drought of 2008-2009 is also indicated in each graph.  The time period for the 

drought was based on discharge levels at Barton Springs (Barton Springs/Edwards Aquifer Conservation District).  Rainfall is shown as lagging 3 months prior to 

the first day of each quarter (secondary y-axis).   
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Figure 4 continued. 
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Figure 4 continued. 
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Figure 5.  Yearly Count Summary. Below are the yearly results of count 

surveys conducted at three sites between 2008 and 2010.  These sites 

are surveyed only once per year, during quarter II.  Surveys were initiated 

for sites 4457 and 1355 in 2009.  Graph notation is the same as Figure 4. 
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Figure 6. Smooth trend lines using a general additive model (GAM) through count data from surveys conducted at eight sites since 1996.  Six of the eight sites 

occur in drainage basins with higher than 15% impervious cover, the other two having less than 5% of impervious cover, as measured from land use data in 

2006.  Trends are mostly negative for the 15% impervious cover sites, although counts for all sites are highly variable.  Data are sparse for several sites (928, 

926, 1045), especially between the years 2000 and 2004. 
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GAM TRENDS 

General additive model (GAM) smooth trends provide a summary of the general population trend at 

each site (Figure 6).  Plots indicate general decreasing pattern in the high impervious cover category, 

with the exception of site 927 (Stillhouse Hollow) and site 930 (Spicewood Spring), which shows an 

increase in counts since the 2008-2009 drought, but not as high as previous levels.  Site 151 (Trib 5) 

shows a very stark decline in salamander counts and is the largest dataset of the high IC category sites.  

Only two time series were considered in the low impervious cover category.  Site 349 (Franklin), reveals 

high variation counts and an overall variable trend that is decreasing in the near term likely due to 

drought conditions during that period.  Site 1045 (Wheless) shows a strong upward trend, however this 

may be partly biased by the change in collection method used at this site post 2006. Initial captures from 

CMR were used as a surrogate for direct counts and may be positively biased because salamanders were 

captured using nets and a slightly more intensive search method. 

 

POISSON REGRESSION MODELS 

The results of the Poisson regression model indicate a declining trend overall for sites in the high 

impervious cover category. The estimate of B (the geometric rate of change) is -0.87%, and the 

associated 95% credible interval (Bayesian correlate to confidence interval) does not include zero (Table 

5).  In contrast, the low IC group (including site 349 and 1045), indicate a positive trend, with B 

estimated at 0.54% per year (credible interval above zero).   Because site 1045 may be heavily 

influencing the positive trend due to a positive bias in counts (see above), we conducted an analysis on 

site 349 alone.  This resulted in estimates of B with a 95% credible interval that includes zero, indicating 

a population trend that is neither increasing nor decreasing. 

 

As an alternative method to examine the effects of impervious cover, average impervious cover 

estimates were imposed as a covariate on the model intercept.  Additionally, to represent one potential 

chemical effect of urban watersheds, specific conductance (SpC) was also included as a covariate. 

Adding covariates to just the intercept, as opposed to the entire model, allows us to examine site-

specific effects of the covariates.  Given the results of the trend analysis above, impervious cover was 

expected to be an important covariate.  Additionally, since sites in highly urbanized watersheds tend to 

have high SpC on average (Bendik 2008), SpC was expected to also have a similar effect on the model as 

IC.  This did not turn out to be the case.  The estimate of βs
 (slope of SpC on the site specific intercept, 

µα) was close to zero (Table 6).  Impervious cover, on the other hand, shows a large effect on the 

intercept (Table 6), although the 95% credible interval just barely includes zero.   

Table 5. Results of Poisson regression for estimates of B, the geometric rate of change per month by sites grouped 

by low (<5%) and high (>15%) impervious cover. 

IC group Mean B Lower CI Upper CI 

< 5% 0.54% 0.09 0.99 

> 15% -0.87% -1.18 -0.55 
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Table 6. Poisson regression with impervious cover and specific conductance as covariates on the model intercept, 

as β
i 
and β

s
, respectively. 

Parameter Mean Lower CI Upper CI 

β
i
 -11.37 -22.81 0.1026 

β
s
 -0.0007 -0.0076 0.0061 

 

MARK-RECAPTURE 

 

Goodness-of-fit estimates for median  ̂ were fairly close to 1 for both Ribelin (1.04) and Lanier (1.19) 

datasets, indicating acceptable model fit.  Wheless had a median  ̂ of 2.72, which was considered to 

have a potentially poor fit (with values of   ̂    considered unacceptable).  However, the correction for 

overdispersion with  ̂ (QAICc) did not alter the order of the best models in any of the analyses. 

The best models from the selection process are listed in Table 7.   Appendix B contains a list of all CMR 

models analyzed in MARK. 

Table 7.  The best models chosen for each dataset and their corresponding QAICc values and weights.  The top 

three models are listed for Ribelin, while a single best model was chosen for the Wheless and Lanier dataset.   

Dataset Model QAICc QAICc Weight No. Par. 

Lanier φ(.) p(t,t) =c(t,t) Markov(t) -2938.0 0.99 70 
Wheless φ(.) p(t,t) =c(t,t) Markov(t) -3763.3 1.00 52 
Ribelin φ(.) p(t,t) =c(t,t) no mov  -729.9 0.34 25 
Ribelin φ(.) p(t,t) =c(t,t) random(.) -728.2 0.15 26 
Ribelin φ(.) p(t)  c(t) random(.) -272.1 0.08 20 

 

There are several differences, aside from the addition of new data, between this analysis and the 

previous one (O’Donnell et al. 2007a).  First, additional QA/QC has been conducted on the 2007 dataset, 

such as corrections of misidentified individuals or data entry errors.  Second, for the Wheless dataset, 

the first primary period of March 2007 was removed because of a violation of closure due to increased 

rainfall and migrants entering the survey area.  Third, the model selection process was different.  The 

previous study, for example, did not include any within primary period time variation of p or c; these 

were the best models selected in the current analysis for all three sites (i.e. models of p(t,t) c(t,t).  The 

current approach was an “all combinations” model selection procedure drawing from a large number 

(60) of candidate models, which did not arbitrarily excluded time-variance of parameters.  The previous 

approach used an ad-hoc model selection procedure, which does not perform as well as an “all 

combinations” approach (Doherty et al. 2010).  Lastly, the standard estimation procedure was used 

rather than the Huggins formulation, as was used in O’Donnell et al. (2007a).  We did not find any 

difference from the Huggins results for one selected dataset (Wheless) in numerical convergence or 

model selection. 
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Among all three sets of analyses, models with p(t,t)=c(t,t) (equal capture and recapture rates with full 

time variation) and constant survival [φ(.)] were the best (Table 7).  Model averaged conditional capture 

probabilities [p(t,t)] from each dataset ranged from 10-50% among sites and secondary sessions (Table 

8).  Average effective capture probabilities, estimated using parameters from the best random 

temporary emigration models, ranged from 0.03 to 0.63.  Effective capture probability varied temporally 

(Figure 7), but mean estimates were fairly similar at Wheless (.21) and Lanier (0.18), and much higher at 

Ribelin (0.47).   

 

Average monthly survival estimates were 0.97, 1.00, and 0.73 for Lanier, Wheless and Ribelin, 

respectively, corresponding to annual estimates of 0.65, 1.00, and 0.02.  The unusually high estimate of 

survival at Wheless was due to problems of numerical estimation of survival and temporary emigration.  

The period of March 2008 at Wheless resulted in zero subsequent recaptures; removing this period from 

the analysis yielded a survival estimate of 0.92 (0.37 annually), which was equivalent to the survival 

estimate from the next best model including March 2008.  Because of these numerical convergence 

problems resulting in spurious estimates of survival and temporary emigration, we used the next best 

model selected for Wheless [φ (.) p(.) c(.) Markov (t)] for estimates of those parameters. 

 

Another problem was encountered with the Ribelin analysis, whereby setting p=c for fully time varying 

models resulted in a spurious estimate of p and N for the first period.  These were not included in the 

model averaged results for these parameters.  Population size estimates were fairly similar to previous 

results (O’Donnell et al. 2007a), where Wheless had the largest mean population size, followed by Lanier 

and then Ribelin, which roughly corresponds with the total surface area surveyed at each site.  

Population sizes ranged from 86 at Lanier to 845 at Wheless (Table 9).  Population size estimates directly 

before and after prolonged dry periods remained stable at Wheless and showed a surprising increase at 

Lanier, followed by a decrease in population size (Figure 9). 

 

Models with time-invariant Markovian movement were heavily favored for both Lanier and Wheless 

datasets, while the best model for the Ribelin dataset was a no-movement model.  The relationship and 

magnitude of mean  ’ and     estimates are very similar between Lanier and Wheless (Table 10).  During 

the course of this study, there was a much higher probability for an individual outside the sampling area 

at time t-1 to remain outside the sampling area, than for an individual within the sampling area, at time 

t-1, to emigrate to outside that area, at time t (Figure 8). These results are in contrast to results of the 

prior study (O’Donnell et al. 2007a), which identified the random (.) movement model as the best for all 

sites.  However, the random (.) model had half the support of the best model for Ribelin in this analysis, 

with a QAICc weight of 0.15 (Table 6).  Model averaged estimates of  ̂ for Ribelin were fairly low (0.11-

0.15), suggesting temporary emigration is much lower there, if present at all, compared to Lanier and 

Wheless. 
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Table 8. Summary of model averaged estimates of conditional capture probabilities, p.  

Site n Range Mean 

Lanier 36 0.010-0.500 0.26 

Wheless 27 0.087-0.329 0.19 

Ribelin 18 0.181-0.448 0.26 

 

Table 9. Summary of model averaged estimates of population size, N. 

Site n Range Mean 

Lanier 12 86-655 225 

Wheless 9 365-845 581 

Ribelin 6 107-166 144 

 

Table 10. Mean estimates of temporary emigration for each site using the variance components method (White et 

al. 2001).  Estimates from Wheless are using the second best model. Two  ̂   and one  ̂’ were excluded from 

Wheless and Lanier averages, respectively, because they had spurious standard errors.  *The no movement model 

was the best model at Ribelin, so estimates of temporary emigration are zero. 

Site  ̂’ 
SE 
 ̂’ 

 ̂   
SE  
 ̂   

Lanier 0.95 <0.01 0.53 0.05 

Wheless 0.95 <0.01 0.60 0.01 

Ribelin* 0.00  0.00  

 

Table 11. Estimates of the average effective capture probability  ̂   calculated from the parameter estimates of 

the best random temporary emigration models (      ) for each site; * ̂ was calculated from an average of the 

time-varying temporary emigration model using the variance components method (White et al. 2001).  Average 

conditional capture probabilities,  ̅, were calculated across all secondary samples (i.e. from all p(t,t)) using the 

variance components method.  The best model for Ribelin was a no movement model, indicating that effective 

capture probability equals conditional capture probability.   

Site  ̅  
SE 
 ̅  

 ̂ 
SE  
  ̂ 

 ̂   
SE 

 ̂   
Lanier 0.27 0.079 0.71* 0.03 0.078 0.001 

Wheless 0.15 0.071 0.61* 0.11 0.142 0.002 
Ribelin 0.20 0.067 0 0 0.20 0.067 
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Figure 7.  Estimates of temporary emigration (gamma), composite 

conditional capture probability (p*), and effective capture probability 

(pjs) from the best random temporary emigration models.  Effective 

capture probabilities vary temporally, showing a decreasing trend at 

both Lanier and Wheless.  Conditional capture probabilities mirror 

effective capture probabilities at Ribelin because of constant 

temporary emigration (gamma) in that model. 
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Figure 8. Markovian movement patterns at Lanier and Wheless.  * indicate estimates had spurious standard errors.  Both sites exhibit consistently high 

γ’ indicating that individuals are unlikely to return to the sample site once they have left.  Estimates of γ’’ are highest towards the later periods, 

suggesting that individuals left the site at a higher rate after the drought (indicated by black bar).  Future surveys will determine whether temporary 

emigration patterns return to pre-drought levels. 
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Figure 9.  Model averaged estimates of population size (N) at Lanier and Wheless springs.  Error bars represent 

95% confidence intervals.  After an approximately 18-month period between surveys where Wheless Spring 

remained without flowing water for the majority of that period, estimates of population size remained relatively 

constant.  The longest dry period at Lanier lasted for approximately 10 months between March 2008 and March 

2009.  Population size estimates were higher after this period, and the subsequent shorter dry period in late spring 

of 2009, but then declined substantially after another short dry spell in the fall. 

DISCUSSION 

COUNT STUDY 

Total counts and juvenile counts of E. tonkawae are statistically higher, on average, in the spring and 

summer months.  While juvenile abundance is generally highest during the spring/summer, juveniles 

may be observed any time of year.  These results are consistent with the previous findings of Bowles et 

al. (2006).  While there is some indication of a seasonal effect on reproduction, these results confirm 

that reproduction can occur year-round, similar to observations of the closely related Barton Springs 

salamander (City of Austin 2009). 

 

While previous studies have shown that sites with higher impervious cover (i.e. higher urbanization 

within their associated drainage basins) tend to have declining population trends (O’Donnell et al. 2006; 

O’Donnell et al. 2007b), a statistical correlation between impervious cover and E. tonkawae population 

trends had never been formally tested.   This relationship has been confirmed by the results of the 
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Poisson regression analysis, indicating that declining trends in counts are correlated with high levels of 

impervious cover.  The covariate analysis also shows a negative effect of impervious cover on base-level 

counts (i.e. the model intercept).  This is consistent with the results of Bowles et al. (2006), who found 

lower densities of E. tonkawae at urbanized sites.  

 

Several studies have reported lower densities of stream-dwelling salamanders or salamander larvae in 

urbanized watersheds (Barrett et al. 2010; Orser & Shure 1972; Price et al. 2006; Willson & Dorcas 

2003); however the mechanism of population degradation has not been well studied.  Barrett et al. 

(2010) demonstrate that higher storm velocities in streams contribute to decreased density of larval 

Eurycea cirrigera, and that degraded water quality was also a likely factor.  Watershed urbanization 

alters numerous aspects of a stream’s chemical, biological, and physical characteristics, which can have 

multiple complex interactions (Walsh et al. 2005).  Separating cause from effect under such 

circumstances is difficult, if not impossible, using only observational studies.  The challenge of 

determining the mechanism of decline as a result of urbanization lies not only in the practical difficulty 

of designing and conducting manipulative experimentation to separate out those effects, but also the 

fact that it must be done, in this case, on a species of conservation concern.  Experimental research may 

be required to determine the cause and effect relationships between water quality degradation and E. 

tonkawae population declines. 

CAPTURE-MARK-RECAPTURE STUDY  

VARIATION IN DETECTION PROBABILITY 

Count survey data, by themselves, can be a useful benchmark for the status of a population only if 

counts are accurate estimates of the actual population size.  If that is the case, counts may be useful as 

indices to population size in order to determine population trends and to investigate factors that control 

population dynamics.  The problem that often occurs is that variation observed in counts is not only due 

to natural fluctuations in population size (due to environmental or demographic factors), but from 

observation error as well.  Studies of terrestrial salamanders have indicated that detection probability 

can vary widely across space and time (Bailey et al. 2004b; Dodd & Dorazio 2004; Hyde & Simons 2001; 

Jung et al. 2000) and it may be inappropriate to use count data to assess population trends without 

accounting for detection probability (Bailey et al. 2004a, b; Dodd & Dorazio 2004; Hyde & Simons 2001).  

Although the aforementioned studies were conducted on terrestrial salamanders, there are several 

commonalities between the terrestrial and aquatic plethodontid study systems.  For example, both 

terrestrial and aquatic plethodontids are found under cover objects, such as rocks, and both have access 

to subterranean habitat (whether in the stream bed or within the forest floor).  Also, both are detected 

in a similar manner with respect to how they are captured (e.g. one is not captured using traps, and the 

other hand captured- both are captured by hand or net).  Therefore we had reason to suspect that 

detection probability for E. tonkawae may vary across space and time, as it does for terrestrial 

plethodontids.  In order to better understand population changes from count data, we must first 

understand how detection probability varies, and identify what factors are influencing detection 

probability.  Prior to this study (and O’Donnell et al. 2007a), p had never been estimated for any E. 
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tonkawae population, so it was impossible to say anything about how p might vary over time or across 

different sites.  

 

In this study, models of full time varying conditional capture probability were chosen for all analyses 

using QAICc. This is in contrast to a previous analysis of these data (O’Donnell et al. 2007a) and one 

study of plethodontid salamanders (Bailey et al. 2004a), where full time-varying detection probabilities 

models were not considered.  These results show that detection probability was variable within and 

between primary sessions.  Between primary periods, environmental conditions can change drastically, 

such as spring discharge or water temperature.  These changes are likely to be more pronounced, for 

example, between surveys conducted during different seasons.  Although we did not test for a seasonal 

effect (only one year with more than 3 primary periods), data from count surveys suggest that 

salamander surface abundance is lower during the winter months (Figure 3, Figure 4), indicating that a 

lower proportion of salamanders may be available for capture at the surface during these times.  

Additional data and analyses are needed to determine whether there is a seasonal effect on 

detectability and whether environmental factors can be correlated to changes in detection.  This will aid 

understanding and interpretation of previously collected count data if corresponding environmental 

data are available for those periods.   

 

We calculated the effective capture probability in order to examine variation among sites and through 

time, and also to compare estimates of capture probability to other salamander studies.  Effective 

capture probability is analogous to capture probability from open-design Jolly-Seber models, and is 

associated with the entire superpopulation, not just the area exposed to capture efforts (Kendall et al. 

1997).  To calculate effective capture probability,   must be estimated from a random temporary 

emigration model.  In this case, models with Markovian movement were heavily favored over models 

with random movement (Table 6).  While the random temporary emigration models were not favored in 

any of the analyses, estimates of conditional capture probability were not drastically different from the 

estimates from the best models.  For this reason we believe that our estimates of effective capture 

probability are reasonable.  To compare temporal trends and averages among sites, we calculated 

effective capture probability from the composite conditional capture probabilities across all secondary 

samples within a primary period, p(t) (Figure 7).  To compare effective capture probabilities to results 

from other studies, and to generate estimates analogous to single-count survey data, we used the 

individual secondary sample estimates of conditional capture probability, p(t,t) (Table 11).  

 

Effective capture probabilities at Lanier and Wheless exhibit a downward trend, although this is likely 

due to the effect of the drought during periods 7 and 8 at Wheless and period 9 at Lanier (Figure 7), 

which showed low effective capture probabilities and high temporary emigration rates.  Overall, 

Wheless and Lanier have similar average effective capture probabilities (Lanier, 0.18; Wheless, 0.21).  

Ribelin had the highest effective capture probability (0.47) due to the fact that temporary emigration 

was zero in the top model.   

 

Compared to studies of terrestrial plethodontid salamanders (Bailey et al. 2004a; Jung et al. 2000; Smith 

& Petranka 2000), our estimates of effective capture probability are generally higher based on our 
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overall averages across all secondary samples (Table 11).  For example, Bailey et al. (2004a) estimated an 

average detection probability of 0.03 across all site-years.  If these results can be generalized to all count 

survey sites, we expect our single-count survey data to exhibit a similar range of effective capture 

probabilities, approximately 6 to 20% on average (Table 11) for a given survey. 

 

The presence of temporary emigration has a profound effect on estimates of effective capture 

probability.  Effective capture probabilities exhibit substantial temporal variation over time at Lanier and 

Wheless (Figure 7), underscoring the difficulty of using counts as indices of population size.  This is in 

contrast to the findings of Bailey et al. (2004b), who found that temporary emigration and conditional 

capture probabilities were inversely related, showing little temporal variation in effective capture 

probability in terrestrial plethodontid salamanders.  Temporal variation in detection probability has 

several important and previously overlooked implications for how the count data are interpreted.  First, 

counts cannot be reliably interpreted as some constant proportion of the true population size, as this 

and several studies of terrestrial and biphasic plethodontid salamanders demonstrate (Dodd & Dorazio 

2004; Hyde & Simons 2001; Jung et al. 2000; Smith & Petranka 2000).  Such an interpretation would 

require a constant detection probability over time, and this is clearly not supported by these results.  

Thus, changing or stable counts over a short period of time do not necessarily imply a changing or stable 

population.  Secondly, counts likely represent a small fraction of the total population size at a given site.  

Therefore, it is incorrect to assume that a site with low counts necessarily has a very small population 

size.  Thirdly, uncertainty in detection probability for count surveys increases uncertainty in the 

magnitude and significance of population trends.  While long-term trends in counts may be a real 

reflection of trends in population size (the alternative being a long term trend in detection), uncertainty 

in detection results in lower confidence in how large or small those declines or increases actually are in 

the population.  Variation in detection that is unaccounted for also increases the possibility that trends 

deemed statistically significant, are not.  Exploring the potential effects of variation in detection 

probability over time on the interpretation of count data will be the focus of a future study. 

 

MOVEMENT PATTERNS 

Temporary emigration was prevalent and variable at Lanier and Wheless.  This is demonstrated by 

variation in γ’and γ” (under the Markovian models) and the effect of γ on effective capture probability 

(under the random models; Figure 7).  Temporary emigration was low at Ribelin, indicated by a no-

movement model having the highest QAICc weight, and lower weighted models with small temporary 

emigration estimates.   

 

The biological significance of the Markovian pattern of emigration at Lanier and Wheless is unclear.  In 

other species, Markovian temporary emigration may relate to the breeding status of an individual, 

whereby its presence at a breeding site is related to whether it was a breeder in the previous year.  This 

is probably not a realistic explanation of the results because Jollyville Plateau salamanders likely breed 

year round.  Additionally, most of the data analyzed were from a single year, meaning that temporary 

emigration is primarily occurring between months, not years.  Consistently high estimates of γ’ at 

Wheless and Lanier may indicate that salamanders away from the study area are less likely to return 
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over time, even though the models only consider first-order Markovian movement.  Thus, some of these 

individuals may eventually become permanent emigrants, resulting in lower population persistence.  

Persistence is reflected in estimates of annual survival because death and permanent emigration are 

confounded.  Estimates of survival were 0.65 and 0.37 for Lanier and Wheless, respectively.  In contrast, 

Ribelin had a much lower annual survival estimate (0.02), and very low temporary emigration.  This 

variation in survival and temporary migration may be partially due to differences in habitats among 

sample sites.  The study site at Ribelin may confine salamanders horizontally: downstream of the study 

site consists of bedrock with almost no surface cover, and there is a small travertine waterfall at the 

upstream end (where the spring emerges).  These features may prevent easy horizontal movement to 

and from the study area.  When horizontal movement does occur, it is more likely to be permanent due 

to those same barriers, thus resulting in a very low temporary emigration rate but a higher permanent 

emigration rate, i.e. low survival.  In contrast, both Lanier and Wheless feature contiguous stretches of 

cover-dominated habitat within the stream bed, perhaps facilitating temporary emigration, allowing 

salamanders to move to and from the study area more easily.  Emigrants at Lanier or Wheless are less 

likely to be permanent emigrants than at Ribelin, where it would be more difficult to return to the 

sample area due to the physical site conditions.  However, high estimates of γ’ at Lanier and Wheless 

indicate that once a salamander is away from the study area, it is less likely to return than if it had just 

left the study area (γ’’).  Since γ’ was consistently high for both study sites, the combined effect may be 

that the longer a salamander is away from a study site, the less likely it is to return.   

 

Whether salamanders were temporarily emigrating outside of the study area, below the stream surface, 

or through spring orifices, is not entirely clear.  Jollyville Plateau salamanders have been observed within 

the stream substrate, 8-12” below the surface, during wet and dry surface conditions (N. Bendik, 

personal observation).  Movement to and from this subsurface habitat may be regulated by cues from 

environmental conditions, such as surface water temperature, or other seasonal changes.  However, the 

results presented here suggest that temporary movements below the subsurface (or along the surface) 

may be more frequent than seasonal, because models with temporary emigration were supported for 

both Lanier and Wheless.  Other Eurycea species are also known to inhabit interstitial spaces of the 

gravel bed below the stream surface (Tumlison & Cline 1997; Tumlison et al. 1990), and some 

populations of Eurycea tynerensis have independently evolved a neotenic life history adapted to this 

subsurface habitat (Bonett & Chippindale 2006).  Whether temporary movements of E. tonkawae occur 

below or above the surface, these results indicate that either (a) salamanders frequently shift between 

habitats above or below the surface of the stream and not just during periods of fluctuating spring flow, 

or (b) that they frequently disperse outside the immediate vicinity of springs (our sampling areas) and 

return, or (c) some combination of a and b.  Bailey et al. (2004a) have shown that a large proportion of 

terrestrial plethodontid populations occur below the surface and are unavailable to capture due to 

temporary emigration.  However, it was impossible to distinguish between emigration below surface or 

upstream/downstream of the study area since it is impractical to leave net barriers in place for longer 

than a few days.  In the future, searches outside the boundary of the survey area might shed light on 

how frequently salamanders are migrating along the surface. 
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EFFECTS OF DROUGHT 

The recent drought that spanned most of 2008 and 2009 in the central Texas region was the worst 

drought since the drought of record in the 1950’s. Prolonged periods of low or no rainfall resulted in 

numerous Jollyville Plateau salamander spring sites going dry (Figure 4).  Salamanders may experience 

several potential negative effects as a result of this process, the most obvious of which is desiccation.  

When surface waters run dry, E. tonkawae can avoid desiccation by following the water table as it 

recedes.  Assuming groundwater refugia are fairly localized, some population losses may be expected 

because of competition for space or failure of some individuals to reach refugia.  For example, during 

previous dry periods salamanders have been found desiccated or stranded in shrinking pools of stagnant 

water (O’Donnell et al. 2007b; Mark Sanders, personal communication).  For those able to recede with 

the water table, prey availability is expected to be lower within local groundwater refugia because of 

reduced ecosystem production and reliance on autotrophic input from surface waters (Gibert et al. 

1994) that may be practically nil during times of drought.  The negative effects of drought may be 

countered in part by reduced predation pressure from macroinvertebrates and centrarchid fishes, which 

are temporarily extirpated when streams run dry (with the possible exception of burrowing crayfish).   

Furthermore, groundwater refugia may be much larger and less localized than expected (e.g. Hauwert & 

Warton 1997), which could also mitigate the effects of drought on surface populations.   

 

Based on the results presented here, the negative effects of the drought were not significant enough to 

decimate populations, as might be expected from such prolonged periods without surface water.   In 

fact, results from both CMR and count based data confirm that E. tonkawae populations are relatively 

resilient to dry surface conditions.  Post-drought response was generally positive among all count-only 

sites, indicated by significantly higher total salamander counts and juvenile counts.  However, the CMR 

results give a more detailed account of how population sizes were affected by the drought because they 

provide point estimates just before the springs went dry and just after they resumed flowing.  

 

Population size remained relatively stable at Wheless, even after 18 months of predominantly dry 

surface conditions (Figure 9).  Ten months of dry surface conditions at Lanier yielded an almost doubling 

of population size (Figure 8), perhaps reflecting a concentration of salamanders at the spring just after 

flow resumed, whereby a greater majority of the superpopulation was available for capture than is 

available during normal flow conditions.  That salamanders may become more concentrated at the 

source of the spring when the water level recedes was also reflected in the unprecedented high number 

of recaptures (~44%) during the first post-drought Wheless survey.  Unlike Wheless Spring, which had 

one prolonged dry period, Lanier Spring experienced several periods where flow would resume and then 

recede during 2009.  Between July and December, estimates of population size were much lower 

(N=106±12) than the prior period (N=656±74) at Lanier (Figure 9).  A pattern of lower survival was 

observed in models with time-varying survival (i.e. persistence) for this time period at Lanier, although φ 

(.) models were more highly supported.  While purely speculative, it is possible that this pattern is the 

result of dispersal following emergence from refugia.  This is also supported by higher estimates of 

temporary emigration at both sites after the drought period (Figure 8).  Alternatively it may reflect a 
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cumulative negative effect of repeated wet and then dry surface conditions, potentially being more 

stressful to the population than a single long dry period, as observed at Wheless.  

 

Observations of juvenile recruitment indicate that reproduction did not completely cease during the 

drought.  In one case, several juveniles (0.5-1 inch) were observed only a few weeks following 

completely dry surface conditions (March 2009, Lanier Spring).  Estimates of incubation period for the 

Barton Springs Salamander, a closely related species, range from three to four weeks (City of Austin 

2002).  Assuming E. tonkawae egg development incubation time is similar, these eggs were laid before 

spring flow resumed.  This is remarkable, considering that Lanier Spring is estimated to have been “dry” 

for approximately 10 months.  In contrast, no juveniles were observed at Wheless following the 18-

month dry period at the end of 2009, although they were observed the following March.  At count study 

sites, total juvenile counts were higher during the 5 quarters following the drought, including sites which 

did not “dry up.”  These results suggest a resiliency of E. tonkawae to natural drought conditions, and in 

some cases, that they are also able to allocate energy towards reproduction (e.g. egg development) 

before surface flow resumes.  Given the frequency of droughts in central Texas, the evolutionary history 

of central Texas Eurycea, and the frequency with which springs on the Jollyville Plateau go dry 

(O’Donnell et al. 2007b), it is unsurprising to learn that E. tonkawae are adapted to such conditions. 

CONCLUSIONS 

 

In this report, we examined trends in count data using a different approach than previous analyses of E. 

tonkawae data.  While the Bayesian Poisson regression used in this study is a relatively simplistic 

analysis that did not incorporate interaction effects or additional covariates (other than conductance or 

impervious cover), it shows promise because additional model complexity can be included relatively 

easily.  On the other hand, its simplicity facilitates generalizations about the effects of different land use 

practices while accounting for differences in baseline population levels.  Using this method, we were 

able to detect a statistically significant difference in trends of salamander counts between sites with 

high and low levels of impervious cover.  This supports previous conclusions that high impervious cover 

is negatively correlated with E. tonkawae salamander counts (Bowles et al. 2006; USFWS 2007). 

 

As previous analyses of the CMR data have shown (O’Donnell et al. 2007a), detection probability is 

highly variable, posing problems for interpreting count data and analyses based on them.  Despite this 

problem, both counts and CMR data were consistent when considering the predominantly positive post-

drought response of E. tonkawae populations.  Reproduction increased following the drought, and 

salamander counts were higher.  We also found that population size did not appear to change drastically 

at CMR sites between long periods with dry surface conditions.   These results show that E. tonkawae 

populations can be resilient to natural drought conditions, even when springs run dry. 
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APPENDIX A- Count Data Models 
 

Bayesian model of trends in counts over time, grouped by impervious cover category, with site effects 

and overdispersion. 

 

OPENBUGS MODEL CODE FOR FIGURE A: 

Model{ 
 #### counts and overdispersion effects  ###### 

 for( k in 1 : ncounts ) { 

  log(lambda[k]) <- alpha[site[k]] + beta[type[k]] * (month[k] - 

fixedmonth) + epsilon[k] 

  epsilon[k] ~ dnorm(0.0, tau.epsilon) 

  count[k] ~ dpois(lambda[k])} 

 tau.epsilon ~ dgamma(0.001,0.001) 

 sd.epsilon <- 1 / pow(tau.epsilon,0.5) 

 #### Site effects  ###### 

 for( i in 1 : nosites ){ 

  alpha[i] ~ dnorm(mu.obs,tau.obs)} 

  mu.obs~dnorm(0,1.0E-6) 

  tau.obs~dgamma(0.001,0.001) 

  sd.obs <- 1 / pow(tau.obs, 0.5) 
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 #### Slope  ###### 

 for (j in 1:notypes) 

 {beta[j] ~ dnorm( 0,1.0E-6)} 

 #### Summary Statistics  ###### 

 for( k in 1 : ncounts ) { 

  loglambda[k] <- alpha[site[k]] + beta[type[k]] * (month[k] - 

fixedmonth) 

  fit[k] <- exp(loglambda[k] + 0.5*sd.epsilon*sd.epsilon)} 

 mu.alpha1<-mean(alpha[1:6]) 

 mu.alpha2<-mean(alpha[7:8]) 

 for( t in 1 : nmonths ){ 

  fitted1[t] <- exp(mu.alpha1 + beta[1]*(t-fixedmonth) 

   + 0.5*sd.epsilon*sd.epsilon + 0.5*sd.obs*sd.obs)} 

  for( t in 1 : nmonths ){ 

  fitted2[t] <- exp(mu.alpha2 + beta[2]*(t-fixedmonth) 

   + 0.5*sd.epsilon*sd.epsilon + 0.5*sd.obs*sd.obs)} 

 B1 <- 100*(pow(fitted1[nmonths]/fitted1[1],1/(nmonths-1))-1) 

 B2<- 100*(pow(fitted2[nmonths]/fitted2[1],1/(nmonths-1))-1)} 

 

 

 
Bayesian model of trends in count data over time (as above) with impervious cover and specific 

conductance covariates imposed on the intercept. 
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OPENBUGS MODEL CODE FOR FIGURE B: 

Model{ 

 #### standardize habitat variables ###### 

 xbar.impc <- mean(impc[1:nosites]) 

 xbar.spc<-mean(spc[1:nosites]) 

 for( i in 1 : nosites ) { 

  Scaled.impc[i]<-impc[i]-xbar.impc 

  Scaled.spc[i]<-spc[i]-xbar.spc} 

  #### counts and overdispersion effects ###### 

 for( k in 1 : ncounts ) { 

  log(lambda[k]) <- alpha[site[k]] + beta * (month[k] - fixedmonth) 

+ epsilon[k]  

  epsilon[k] ~ dnorm(0.0, tau.epsilon) 

     count[k] ~ dpois(lambda[k]) } 

 tau.epsilon ~ dgamma(0.001,0.001) 

 sd.epsilon <- 1 / pow(tau.epsilon, 0.5) 

 #### impervious cover effects ###### 

 # Comment out node or constant definition to decide inclusion # 

 beta.i ~ dnorm(0.0, 1.0E-6) 

 beta.s~ dnorm(0.0, 1.0E-6) 

 #beta.i<-0 

 #beta.s<-0 

 #### Site effects ###### 

 for( i in 1 : nosites ) { 

  mu.alpha[i] <- mu.obs + 

beta.i*Scaled.impc[i]+beta.s*Scaled.spc[i] 

  alpha[i] ~ dnorm( mu.alpha[i],tau.obs)} 

 mu.obs ~ dnorm(0.0, 1.0E-6) 

 tau.obs ~ dgamma(0.001,0.001) 

 sd.obs <- 1 / pow(tau.obs, 0.5) 

   mean.obs <- mean(mu.alpha[1:nosites ]) 

 #### slope ###### 

 beta ~ dnorm( 0.0,1.0E-6) 

 ### Expected average counts (derived)### 

  for( t in 1 : nmonths ){ 

  fitted[t] <- exp(mean.obs + beta*(t-fixedmonth) 

   + 0.5*sd.epsilon*sd.epsilon + 0.5*sd.obs*sd.obs)}} 

 

EXAMPLE OF R-CODE FOR GAM SMOOTH: 

 

#GAM(mgcv) Generalized additive models with integrated smoothness 

#df is a relative measure of smoothing 

#gam fits using splines 

 

library(mgcv) 
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sites <- read.table("928.txt", header = TRUE, sep = "\t", quote="\"", 

dec=".")  

p<-as.Date(sites$date, origin="1960-01-01") 

sgam1 <- gam(sites$y ~ s(sites$date)) 

sgam <- predict(sgam1, se=TRUE) 

plot(p,sites$y, xlab='Time', ylab='Counts',main="Site 928 GAM Smooth") 

 lines(p,sgam$fit, lty = 1) 

 lines(p,sgam$fit + 1.96* sgam$se, lty = 2) 

 lines(p,sgam$fit - 1.96* sgam$se, lty = 2) 

 

savePlot(filename = "928 GAM smooth", 

         type = "png", 

         device = dev.cur(), 

         restoreConsole = TRUE) 

sink("928 GAM summary.txt") 

summary(sgam1) 

sink() 
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APPENDIX B- CMR model results 

LANIER 

Model QAICc 
Delta 

QAICc 
AICc 

Weights 
Model 

Likelihood 
Num. 
Par 

φ(.) p(t,t) =c(t,t) Markov (t)  -2938.0397 0 0.99105 1 70 

φ(t) p(t,t) =c(t,t) Markov (t)                     -2927.3483 4.2669 0.00473 0.0048 78 

φ(.) p(t,t)  c(t,t) Markov (t)                              -2927.1164 4.4988 0.00421 0.0042 82 

φ(t) p(t,t)  c(t,t) Markov (t)                       -2916.0794 15.5358 0.00002 0 90 

φ(t) p(t) c(t) Markov (t)  -2908.5895 23.0257 0 0 66 

φ(.) p(t)=c(t) Markov (t) -2904.8825 26.7327 0 0 46 

φ(t) p(t)=c(t) Markov (t)  -2894.5167 37.0985 0 0 54 

φ(t) p(t,t)  c(t,t) Markov (.)  -2894.0205 37.5947 0 0 73 

φ(t) p(t,t) =c(t,t) Markov (.) -2891.2754 40.3398 0 0 61 

φ(.) p(t) c(t) Markov (t)                                           -2885.9469 45.6683 0 0 58 

φ(.) p(.) c(.) Markov (t)                                          -2875.0362 56.579 0 0 36 

φ(t) p(t) c(t) Markov (.) -2871.6445 59.9707 0 0 49 

φ(.) p(t) c(t) Markov (.)                                  -2868.0515 63.5637 0 0 39 

φ(t) p(.) c(.) Markov (t)  -2867.9357 63.6795 0 0 44 

φ(t) p(t)=c(t) Markov (.) -2858.8477 72.7675 0 0 37 

φ(.) p(.)=c(.) Markov (t)                                                     -2857.8189 73.7963 0 0 35 

φ(.) p(t,t)  c(t,t) Markov (.)  -2857.7956 73.8196 0 0 63 

φ(t) p(t,t) =c(t,t) random (t) -2851.3051 80.3101 0 0 69 

φ(t) p(.)=c(.) Markov (t)  -2843.3739 88.2413 0 0 43 

φ(t) p(t,t)  c(t,t) random (t)                    -2835.9298 95.6854 0 0 81 

φ(t) p(t) c(t) random (t) -2834.2872 97.328 0 0 57 

φ(.) p(t,t) =c(t,t) random (t)                         -2827.078 104.5372 0 0 60 

φ(.) p(t,t) =c(t,t) Markov (.)                               -2824.1779 107.4373 0 0 51 

φ(t) p(t)=c(t) random (t) -2817.5116 114.1036 0 0 45 

φ(.) p(t,t)  c(t,t) random (t)                    -2811.9413 119.6739 0 0 72 

φ(t) p(.)=c(.) Markov (.) -2811.2828 120.3324 0 0 26 

φ(.) p(t) c(t) random (t)                                       -2809.8261 121.7891 0 0 48 

φ(t) p(.) c(.) Markov (.) -2809.2284 122.3868 0 0 27 

φ(t) p(.) c(.) random (t) -2803.0042 128.611 0 0 35 

φ(t) p(t) c(t) random (.) -2794.8738 136.7414 0 0 48 

φ(.) p(t)=c(t) random (t)                                               -2792.8203 138.7949 0 0 36 

φ(.) p(t)=c(t) Markov (.)                                            -2791.5469 140.0683 0 0 27 

φ(t) p(t,t)  c(t,t) random (.)  -2790.9005 140.7147 0 0 72 

φ(.) p(.) c(.) random (t)                                                   -2778.1246 153.4906 0 0 26 

φ(t) p(.)=c(.) random (t) -2775.6263 155.9889 0 0 34 

φ(t) p(t,t) =c(t,t) random (.) -2772.6083 159.0069 0 0 60 

φ(t) p(t) c(t) no mov -2758.8803 172.7349 0 0 48 

φ(.) p(t) c(t) random (.)                                               -2756.5632 175.052 0 0 38 

φ(t) p(t)=c(t) random (.) -2738.9819 192.6333 0 0 36 

φ(t) p(t,t)  c(t,t) no mov  -2731.1789 200.4363 0 0 71 

φ(.) p(t) c(t) no mov                                                           -2724.2892 207.326 0 0 38 

φ(.) p(t,t) c(t,t) random (.)  -2718.0881 213.5271 0 0 62 

φ(t) p(.)=c(.) random (.) -2707.8224 223.7928 0 0 25 

φ(t) p(.) c(.) random (.) -2705.9155 225.6997 0 0 26 
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φ(.) p(t,t) =c(t,t) random (.)                                         -2665.6601 265.9551 0 0 50 

φ(.) p(t,t) c(t,t) no mov  -2649.5851 282.0301 0 0 61 

φ(t) p(t,t) =c(t,t) no mov -2646.9525 284.6627 0 0 60 

φ(.) p(.) c(.) Markov (.)                                            -2644.1107 287.5045 0 0 17 

φ(.) p(t)=c(t) random (.)                                               -2631.7635 299.8517 0 0 26 

φ(.) p(.)=c(.) Markov (.)                                            -2631.7183 299.8969 0 0 16 

φ(.) p(.)=c(.) random (t)                             -2631.0254 300.5898 0 0 24 

φ(t) p(.) c(.) no mov -2629.8839 301.7313 0 0 25 

φ(t) p(t)=c(t) no mov -2621.3585 310.2567 0 0 36 

φ(.) p(t,t) =c(t,t) no mov                                               -2520.6865 410.9287 0 0 50 

φ(.) p(.)=c(.) random (.)                        -2518.6453 412.9699 0 0 15 

φ(.) p(.) c(.) random (.)                                               -2517.6092 414.006 0 0 16 

φ(.) p(t)=c(t) no mov                                                     -2497.3304 434.2848 0 0 25 

φ(.) p(.) c(.) no mov                                                       -2445.3628 486.2524 0 0 15 

φ(t) p(.)=c(.) no mov -2444.8526 486.7626 0 0 24 

φ(.) p(.)=c(.) no mov                                              -2174.1402 757.475 0 0 14 

WHELESS 

Model QAICc 
Delta 

QAICc 
AICc 

Weightt 
Model 

Likelihood 
Num. 
Par 

φ(.) p(t,t)=c(t,t) Markov (t)     -3763.3169 0 0.99875 1 52 

φ(.) p(.) c(.) Markov (t)                 -3749.5185 13.7984 0.00101 0.001 27 

φ(.) p(t,t) c(t,t) Markov (t)   -3746.2625 17.0544 0.0002 0.0002 61 

φ(.) p(t) c(t) Markov (t) -3743.4578 19.8591 0.00005 0.0001 43 

φ(.) p(.)=c(.) Markov (t)                                                                          -3723.3601 39.9568 0 0 26 

φ(.) p(t)=c(t) Markov (t)                                                                  -3711.0238 52.2931 0 0 32 

φ(t) p(t,t)=c(t,t) Markov (t) -3707.6532 55.6637 0 0 57 

φ(t) p(t,t)=c(t,t) Markov (.)                                                        -3698.9296 64.3873 0 0 46 

φ(t) p(t,t) c(t,t) Markov (t) -3697.2644 66.0525 0 0 65 

φ(t) p(t) c(t) Markov (t) -3694.563 68.7539 0 0 48 

φ(t) p(t,t) c(t,t) Markov (.)   -3687.9559 75.361 0 0 55 

φ(.) p(t,t) c(t,t) Markov (.)   -3678.1763 85.1406 0 0 48 

φ(t) p(.) c(.) Markov (.)                                                                  -3672.6318 90.6851 0 0 21 

φ(t) p(t) c(t) Markov (.)                                                                -3668.6455 94.6714 0 0 37 

φ(.) p(t,t)=c(t,t) Markov (t) -3667.5586 95.7583 0 0 50 

φ(t) p(.)=c(.) Markov (t)                                 -3664.9301 98.3868 0 0 30 

φ(t) p(t)=c(t) Markov (t)                    -3661.5945 101.7224 0 0 38 

φ(.) p(t) c(t) Markov (.)                                                                  -3655.3698 107.9471 0 0 30 

φ(.) p(.) c(.) Markov (.)                                                             -3653.6298 109.6871 0 0 14 

φ(t) p(t)=c(t) Markov (.)                                                                 -3651.8357 111.4812 0 0 28 

φ(t) p(.)=c(.) Markov (.)                                                            -3646.6189 116.698 0 0 20 

φ(.) p(t)=c(t) Markov (.)                                                            -3638.2156 125.1013 0 0 21 

φ(.) p(.)=c(.) Markov (.)                                                      -3628.1661 135.1508 0 0 13 

φ(t) p(.) c(.) Markov (t)                             -3622.9848 140.3321 0 0 30 

φ(t) p(t) c(t) random (t)          -3611.8359 151.481 0 0 42 

φ(t) p(t,t)=c(t,t) random (t)                       -3610.7341 152.5828 0 0 51 

φ(t) p(.) c(.) random (t)                        -3608.5458 154.7711 0 0 26 

φ(t) p(t,t)=c(t,t) random (.)                                         -3604.9776 158.3393 0 0 45 

φ(t) p(t,t) c(t,t) random (t)  -3599.3158 164.0011 0 0 60 
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φ(t) p(t,t) c(t,t) random (.)   -3594.5124 168.8045 0 0 54 

φ(t) p(t,t)=c(t,t) no mov                                                   -3586.1842 177.1327 0 0 44 

φ(t) p(t,t) c(t,t) no mov  -3585.3844 177.9325 0 0 53 

φ(.) p(t) c(t) random (t)                                                      -3583.3675 179.9494 0 0 35 

φ(.) p(t,t)=c(t,t) random (t)                                                      -3581.7223 181.5946 0 0 44 

φ(.) p(.) c(.) random (t)                                                                 -3581.3507 181.9662 0 0 19 

φ(t) p(.)=c(.) random (t)                                   -3571.4954 191.8215 0 0 25 

φ(.) p(t,t) c(t,t) random (t)   -3570.7759 192.541 0 0 53 

φ(t) p(t) c(t) random (t)e (.)                                                             -3569.0351 194.2818 0 0 36 

φ(t) p(t)=c(t) random (t)                           -3563.4693 199.8476 0 0 33 

φ(t) p(t)=c(t) random (.)                                                               -3560.08 203.2369 0 0 27 

φ(t) p(.) c(.) random (.)                                                              -3552.4348 210.8821 0 0 20 

φ(t) p(t) c(t) no mov                                                                     -3548.8317 214.4852 0 0 35 

φ(.) p(t,t) c(t,t) random (.)   -3546.7057 216.6112 0 0 47 

φ(t) p(.)=c(.) random (.)                                                           -3545.137 218.1799 0 0 19 

φ(t) p(t)=c(t) no mov                                                                   -3543.561 219.7559 0 0 26 

φ(.) p(t,t)=c(t,t) random (.)                                               -3543.3611 219.9558 0 0 38 

φ(.) p(.)=c(.) random (t)                                                                   -3539.5434 223.7735 0 0 18 

φ(t) p(.) c(.) no mov                                                                     -3534.3803 228.9366 0 0 19 

φ(.) p(t)=c(t) random (t)                                                           -3533.9274 229.3895 0 0 26 

φ(t) p(.)=c(.) no mov -3528.5907 234.7262 0 0 18 

φ(.) p(t,t) c(t,t) no mov   -3525.942 237.3749 0 0 46 

φ(.) p(t) c(t) random (t)e (.)                                                           -3524.3773 238.9396 0 0 29 

φ(.) p(t) c(t) no mov                                                                     -3512.6571 250.6598 0 0 28 

φ(.) p(t,t)=c(t,t) no mov                                                    -3501.2915 262.0254 0 0 37 

φ(.) p(t)=c(t) random (.)                                                     -3500.0002 263.3167 0 0 20 

φ(.) p(t)=c(t) no mov                                                            -3459.9842 303.3327 0 0 19 

φ(.) p(.) c(.) random (.)                                                          -3434.0682 329.2487 0 0 13 

φ(.) p(.)=c(.) random (.)                                                                  -3412.613 350.7039 0 0 12 

φ(.) p(.) c(.) no mov                                                              -3380.6126 382.7043 0 0 12 

φ(.) p(.)=c(.) no mov                                                             -3317.7674 445.5495 0 0 11 

RIBELIN 

Model QAICc 
Delta 

QAICc 
AICc 

Weights 
Model 

Likelihood 
Num. 
Par 

φ(.) p(t,t)=c(t,t) no mov -729.9427 0 0.34492 1 25 

φ(.) p(t,t)=c(t,t) random (.) -728.2333 1.7094 0.14673 0.4254 26 

φ(.) p(t) c(t) random (.) -727.1362 2.8065 0.08478 0.2458 20 

φ(.) p(t,t)=c(t,t) Markov (.) -726.5937 3.349 0.06464 0.1874 27 

φ(t) p(t,t)=c(t,t) random (.) -726.1016 3.8411 0.05054 0.1465 30 

φ(t) p(t) c(t) random (.) -725.9579 3.9848 0.04704 0.1364 24 

φ(t) p(t,t)=c(t,t) no mov -725.8037 4.139 0.04355 0.1263 29 

φ(.) p(t) c(t) Markov (.) -725.0018 4.9409 0.02916 0.0845 21 

φ(.) p(t) c(t) no mov -724.6433 5.2994 0.02438 0.0707 19 

φ(t) p(t) c(t) Markov (.) -724.4345 5.5082 0.02196 0.0637 25 

φ(t) p(t,t)=c(t,t) Markov (.) -724.3678 5.5749 0.02124 0.0616 31 

φ(.) p(t,t) c(t,t) random (.)  -724.1433 5.7994 0.01898 0.055 32 

φ(.) p(t,t) c(t,t) no mov  -724.0595 5.8832 0.01821 0.0528 32 

φ(.) p(t) c(t) random (t) -723.7058 6.2369 0.01525 0.0442 24 
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φ(t) p(t,t) c(t,t) no mov  -723.5232 6.4195 0.01392 0.0404 34 

φ(.) p(t,t)=c(t,t) random (t) -722.8917 7.051 0.01015 0.0294 30 

φ(.) p(t,t) c(t,t) Markov (.)  -722.5175 7.4252 0.00842 0.0244 33 

φ(t) p(t,t) c(t,t) random (.)  -722.2238 7.7189 0.00727 0.0211 35 

φ(t) p(t,t) c(t,t) Markov (.)  -722.0678 7.8749 0.00673 0.0195 35 

φ(t) p(t) c(t) no mov -721.5419 8.4008 0.00517 0.015 23 

φ(t) p(t) c(t) random (t) -720.9931 8.9496 0.00393 0.0114 27 

φ(t) p(t,t)=c(t,t) random (t) -720.3451 9.5976 0.00284 0.0082 33 

φ(t) p(.) c(.) random (.) -719.5534 10.3893 0.00191 0.0055 14 

φ(t) p(t) c(t) Markov (t) -719.3269 10.6158 0.00171 0.005 29 

φ(.) p(t,t) c(t,t) random (t)  -718.887 11.0557 0.00137 0.004 35 

φ(.) p(.) c(.) random (t) -718.6317 11.311 0.00121 0.0035 14 

φ(.) p(t) c(t) Markov (t) -718.15 11.7927 0.00095 0.0028 28 

φ(t) p(.) c(.) Markov (.) -718.0398 11.9029 0.0009 0.0026 15 

φ(.) p(t,t)=c(t,t) Markov (t) -717.9202 12.0225 0.00085 0.0025 34 

φ(t) p(t,t) c(t,t) random (t)  -715.9344 14.0083 0.00031 0.0009 38 

φ(t) p(t,t)=c(t,t) Markov (t) -715.4785 14.4642 0.00025 0.0007 36 

φ(t) p(.) c(.) random (t) -714.9657 14.977 0.00019 0.0006 17 

φ(.) p(t,t) c(t,t) Markov (t)  -714.4718 15.4709 0.00015 0.0004 39 

φ(.) p(.) c(.) random (.) -714.259 15.6837 0.00014 0.0004 10 

φ(.) p(.) c(.) Markov (t) -714.1723 15.7704 0.00013 0.0004 18 

φ(.) p(.) c(.) Markov (.) -712.2268 17.7159 0.00005 0.0001 11 

φ(t) p(.) c(.) Markov (t) -712.0043 17.9384 0.00004 0.0001 20 

φ(t) p(t,t) c(t,t) Markov (t)  -710.94 19.0027 0.00003 0.0001 41 

φ(.) p(t)=c(t) no mov -699.9556 29.9871 0 0 13 

φ(t) p(.) c(.) no mov -698.1531 31.7896 0 0 13 

φ(.) p(t)=c(t) random (.) -698.1237 31.819 0 0 14 

φ(t) p(.)=c(.) no mov -697.8988 32.0439 0 0 12 

φ(t) p(.)=c(.) random (.) -697.2033 32.7394 0 0 13 

φ(.) p(t)=c(t) Markov (.) -696.5973 33.3454 0 0 15 

φ(t) p(t)=c(t) no mov -696.4072 33.5355 0 0 17 

φ(t) p(t)=c(t) random (.) -696.336 33.6067 0 0 18 

φ(t) p(.)=c(.) Markov (.) -695.3743 34.5684 0 0 14 

φ(.) p(.) c(.) no mov -694.9823 34.9604 0 0 9 

φ(t) p(t)=c(t) Markov (.) -694.5827 35.36 0 0 19 

φ(.) p(.)=c(.) no mov -693.1375 36.8052 0 0 8 

φ(.) p(t)=c(t) random (t) -692.8708 37.0719 0 0 18 

φ(.) p(.)=c(.) random (t) -692.6754 37.2673 0 0 13 

φ(t) p(.)=c(.) random (t) -692.637 37.3057 0 0 16 

φ(.) p(.)=c(.) random (.) -691.881 38.0617 0 0 9 

φ(t) p(t)=c(t) random (t) -690.8655 39.0772 0 0 21 

φ(.) p(.)=c(.) Markov (t) -690.8024 39.1403 0 0 17 

φ(.) p(.)=c(.) Markov (.) -689.8697 40.073 0 0 10 

φ(.) p(t)=c(t) Markov (t) -688.7736 41.1691 0 0 22 

φ(t) p(.)=c(.) Markov (t) -687.7023 42.2404 0 0 19 

φ(t) p(t)=c(t) Markov (t) -686.2001 43.7426 0 0 24 
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