### **Rate Structures**

Mark Beauchamp, CPA, CMA, MBA

President Utility Financial Solutions Holland, Michigan P: 616-393-9722

E: mbeauchamp@ufsweb.com





## **Objectives**

- Fixed cost recovery in rates
- Residential rate structures and impact of tiered-energy rates
- Treatment of pass-through charges
- Consideration of discounts to particular groups of customers
- Rate Design Objectives



### **Fixed and Variable Costs**

- Ideally Rate Structures recover fixed costs through a customer charge and/or demand charge (kW)
- Variable costs, such as fuel or power supply, are recovered through energy (kWh)
  - Ability to recover fixed and variable costs are limited due to metering or billing capabilities and customer understanding of rates



## **Demand Charges**

- Many utilities are moving toward or considering demand charges for all commercial customers
  - Send better price signals to customers
  - Reduce subsidies between customers



## Distribution Usage Charges

- Most <u>inaccurate</u> method of distribution cost recovery is through a kWh charge
- Distribution system is constructed to handle a customer's peak demand or a class's peak demands and are not constructed to handle kWh's



# Movement Toward Increasing Demand Charges for Distribution Costs Recovery

| Method of Distribution R | Recovery |         |         |         |         |
|--------------------------|----------|---------|---------|---------|---------|
| Demand Rate              | \$ 5.90  |         |         |         |         |
| kWh Charge               | 0.0223   |         |         |         |         |
|                          |          |         |         |         |         |
| Load Factor              | 20.0%    | 30.0%   | 40.0%   | 50.0%   | 60.0%   |
| Peak Demand              | 1,000    | 1,000   | 1,000   | 1,000   | 1,000   |
| kWh's Used by Customer   | 146,000  | 219,000 | 292,000 | 365,000 | 438,000 |
|                          |          |         |         |         |         |
| Demand Rate              | 5,899    | 5,899   | 5,899   | 5,899   | 5,899   |
|                          |          |         |         |         |         |
| Energy Rate              | 3,259    | 4,888   | 6,517   | 8,147   | 9,776   |
|                          |          |         |         |         |         |
| Difference               | (2,640)  | (1,011) | 619     | 2,248   | 3,877   |

# **Example: Inclining Block Rate**Structures

| Cu      | stomer | First 500 | Next 500 |        |  |
|---------|--------|-----------|----------|--------|--|
| Charges |        | kWh's     | kWh's    | Excess |  |
| \$      | 10.00  | 0.08      | 0.10     | 0.12   |  |

- Rates increase with increased usage
- Shifts fixed cost recovery that should occur in early blocks to outer blocks
- When customers reduce usage they reduce from the outer blocks causing under-recovery of fixed costs



# Inclining Block Rate Structures

#### Positives:

- Promotes energy conservation
- Reducing need for future generating resources
- Lower cost for low use customers
- Lowers cost for seasonal customers

### Negatives:

- Not cost of service based
- Creates revenue instability for utility
- Increases charges for year-round rate payers
- Creates cross-class subsidization between customers



# Flat & Declining Rate Structures

# Flat All kWh's are at same price Negatives:

 Limits price signal to promote conservation

#### **Positives:**

- Cost of service based
- Reduces subsidization between customers within a class

# Declining Price per kWh decreases with increased customer usage

#### **Negatives**

- Does not promote energy conservation
- Not cost of service based

#### **Positives**

Promotes utility revenue stability



## Impacts on Customer Classes

- Movement to full cost of service may result in substantial increases or decreases in certain classes
  - Slow movement toward cost of service may be considered
  - Normally request a bandwidth around the average increase to move classes closer to cost of service targets



# **Example Movement Toward Cost of Service**

| Customer Class                       | COS<br>Results | Proposed<br>2017<br>Adjustment | Revenue<br>with 2017<br>Rates |
|--------------------------------------|----------------|--------------------------------|-------------------------------|
| ResidentialRate-RES                  | 24.0%          | 3.6%                           | \$ 66,883                     |
| General Service GS1Rate-GS1          | 28.0%          | 3.7%                           | 18,033                        |
| General Service Demand GS2Rate-GS2   | 2.0%           | 0.8%                           | 51,360                        |
| Primary PRIMRate-PRIM                | 8.0%           | 1.4%                           | 19,100                        |
| Transmission TRANRate-TRAN           | 35.0%          | 4.2%                           | 2,060                         |
| Metered Outdoor Lighting OLRRate-PtL | -2.0%          | 0.6%                           | 279                           |
| TOTAL Revenue from Rates             |                | 2.40%                          | \$ 157,715                    |

# Stabilizing Distribution Cost Recovery

- Decoupling mechanism
- Customer charge increases
- Movement toward more stable rate structures
  - Demand charges for distribution recovery
  - Recovery on installed kVa transformer capacity
  - Combination of minimum bill and customer charge



# Power (Fuel, Energy) Cost Adjustments

- Critical to Maintaining the Financial Stability of Utility
- Important for utility bond ratings
- Has to be implemented properly to reduce or prevent customer complaints
  - Method chosen should limit significant month to month fluctuations
  - Trued up if exceeds 1.0 cent/kWh (Placed in Rate Tariff)
  - If PCA gets high may be unfair to high load factor customers



## Decoupling

- Generic term for a rate adjustment mechanism that separates (decouples) an electric utility's fixed cost recovery from the amount of electricity it sells.
- Utilities collect revenues based on regulatory determined revenue requirement
- On a periodic basis revenues are "trued-up" to the predetermined revenue requirement using an automatic rate adjustment
- Actual utility revenues should more closely track its projected revenue requirements, and distribution cost recovery should not increase or decrease with changes in sales



## Design of Electric Rates Balancing Cost to Service with Community Objectives

- Revenue Stability for Utility
- Fairness to customers
- Environmental Objectives
  - Promote and fund energy efficiency programs
  - Promotion of customer installed renewable generation
  - Incentives to promote conservation of electricity
- Economic Development
- Promote growth of system



### **Social Considerations**

- Rate Designs and Impacts
  - Low use customers
  - Low Income customers
  - Year-round customers
- Impacts on customers within each class
  - Substantial changes to a component of the rate design can have substantial impacts



### Other Considerations

- Movement toward cost of service based rate structures may result in impacts to low income
- Many utilities are implementing appropriate rate structures to recovery costs and deal with low income using low income assistance rates

