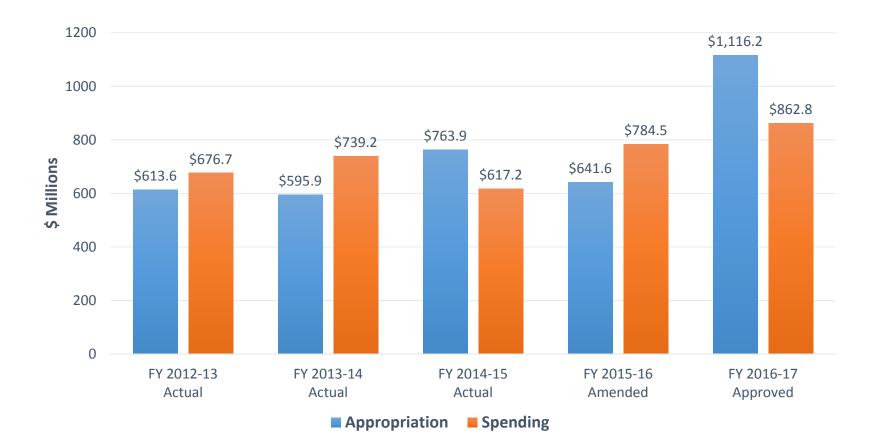
Mobility Capital Improvement Programs (CIP)

Council Mobility Committee Dec. 7, 2016

ATD PROGRAMS FUNDED THROUGH CIP

Programs	Examples
Corridor/Roadway Improvements	Smart Corridors, I-35 at 51 st St.
Safety	Intersection Improvements
Signals	Signals, PHBs, School Zones
Technology	Transit Signal Priority, Video Detection
Local Area Traffic Management	Speed Cushions, Median Islands
Active Transportation	Bike Lanes
Railroad Quiet Zones	Restrict train horn use 24/7

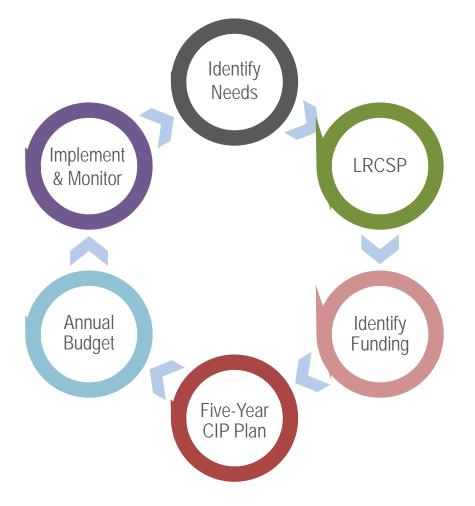

PWD PROGRAMS FUNDED THROUGH CIP

Programs	Examples
Street Improvements	Colorado Street and Justin Lane Reconstruction Projects
Bridges, Culverts, & Structures Improvements	Barton Springs Road Bridge
Sidewalk Improvements	City Wide Construction and Rehabilitation
Urban Trail Improvements	Violet Crown Trail, MoPac Mobility Bridge
Neighborhood Partnering Program	Tillery Street Sidewalks, Powell Lane Sidewalks

OPERATING BUDGET VS. CAPITAL BUDGET

Operating Budget	Capital Budget						
Funds Day-to-Day Operations	Funds Capital Assets (Buildings, Infrastructure, Vehicles)						
Annual Appropriations	Multi-year Appropriations						
Primary Funding Sources: Taxes, Fees for Service, Grants	Primary Funding Sources: Debt, Transfer from Operating, Grants						
\$3.7 Billion (Includes Debt Service and Transfers to Capital)	\$863Million Spending Plan						

CAPITAL BUDGET APPROPRIATIONS VS. SPENDING



TYPES OF DEBT

Types of Debt	Purpose	Voter Approval	Term
Public Improvement Bonds (PIBs)	Capital assets	Yes	20 Years
Certificates of Obligation (COs)	Real property; off-cycle capital needs	No	10 – 20 Years
Contractual Obligation (KOs)	Equipment	No	5 – 10 Years
Commercial Paper (CP)*	Capital assets	No	270 Days
Revenue Bonds*	System improvements; Refund CP to longer terms	No	20 – 30 Years

* CP utilized by AE and AW; Revenue Bonds utilized by AE, AW, Aviation, and Convention Center.

CAPITAL IMPROVEMENTS PROGRAM CYCLE

ANNUAL CIP TIMELINE

January – April	 Annual CIP development kickoff Development of 5-year CIP spending plan
June	 Publication of 5-year Plan
June	 General Obligation Debt Schedule Certificates of Obligation Notice of Intent
Early August	 Proposed budget submitted to Council (including capital program appropriations)
August	Bond Sale
September	 Budget adoption

CITY OF AUSTIN PUBLIC WORKS DEPARTMENT

Prioritizing Street Renewal Projects

CONNECTING YOU ALL AROUND AUSTIN

Street Assets

Basics

Lane Mile Definition Data Collection Street Grades

Austin's Streets

Street Inventory Benchmarking Austin Pavement Maintenance Pavement Life Cycle

Prioritization

Pavement Management Prioritization Factors Coordination

Lane Mile Definition Data Collection Street Grades

Lane Mile Data Collection Street Grades

A Lane Mile (LM) is defined by the area of a 10' lane, one mile long.

1 LM = 10' x 5,280' = 52,800 SF

Example: Speedway from 40th St to 43rd St 40' x 1,320' = 52,800 SF = 1.0 LM

Pavement Data Collection (PDC)

New street condition data is gathered by a certified contractor on half (50%) of the street network each year.

Pavement Data

- 1) Ride Quality International Roughness Index (IRI) ASTM Standards E950, E1926
- 2) Surface Distresses Pavement Condition Index (PCI) ASTM Standard D6433

Distresses: 4 Primary Cracking Types

- Alligator Cracking
- Block Cracking
- Longitudinal Cracking
- Transverse Cracking

*ASTM - American Society of Testing and MaterialsAustin | Public Works Department

Lane Mile Data Collection **Street Grades**

Street Grades – Condition Definitions

Condition Grade	General Description
"A" – Excellent	Very Smooth Ride
"B" – Good	Smooth Ride
"C" – Fair	Acceptable Ride (may have minor roughness)
"D" – Poor	Moderately Rough Ride
"F" – Failed	Very Rough Ride

Lane Mile Data Collection **Street Grades**

A – Excellent Streets

Very Smooth Ride

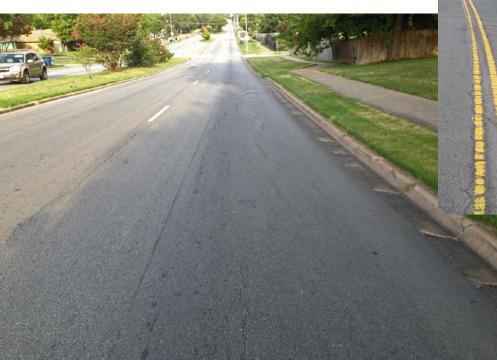
Street should need only preventative maintenance (PM).

Lane Mile Data Collection **Street Grades**

B – Good Streets

Smooth Ride

Street should primarily need only preventative maintenance (PM), may need a few minor spot repairs.



Lane Mile Data Collection **Street Grades**

C – Fair Streets

Acceptable Ride (may have minor roughness)

Street still preserved primarily by preventative maintenance (PM); however, it may need more spot repairs to hold in acceptable condition.

Lane Mile Data Collection **Street Grades**

D – Poor Streets

Moderately Rough Ride

Street is in less than desirable condition and has an unsatisfactory ride.

Lane Mile Data Collection **Street Grades**

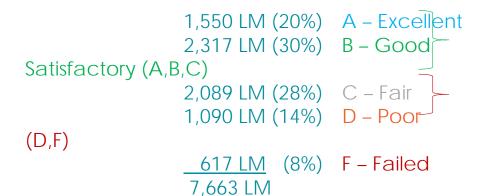
F – Failed Streets

Very Rough Ride

Street does not have an acceptable ride even at reduced speeds. Reconstruction is necessary to improve the street.

Pavement Conditions in Austin

Austin's Street Inventory

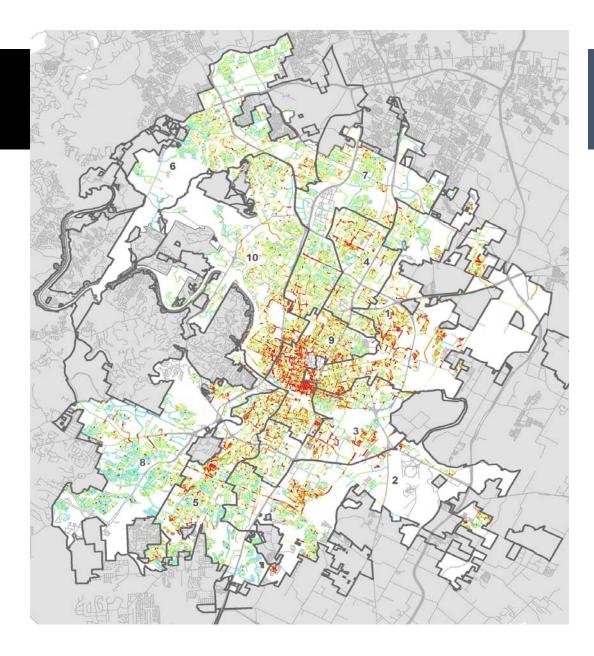

Street Condition

Age of Streets

Streets by District

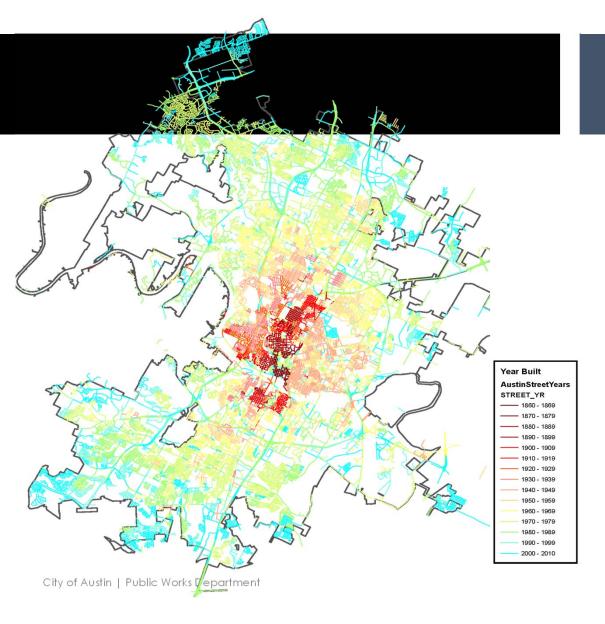
Street Inventory

Complete FY16 Street Network


5,956 LM (78%)

1,707 LM (22%) Unsatisfactory

Street Condition


Blue – Excellent Green – Good Yellow - Fair Orange – Poor Red - Failed

Age of Streets

Blue – 0 to 20 years Green – 20 to 40 years Yellow – 40 to 50 years Orange – 60 to 80 years Red – older

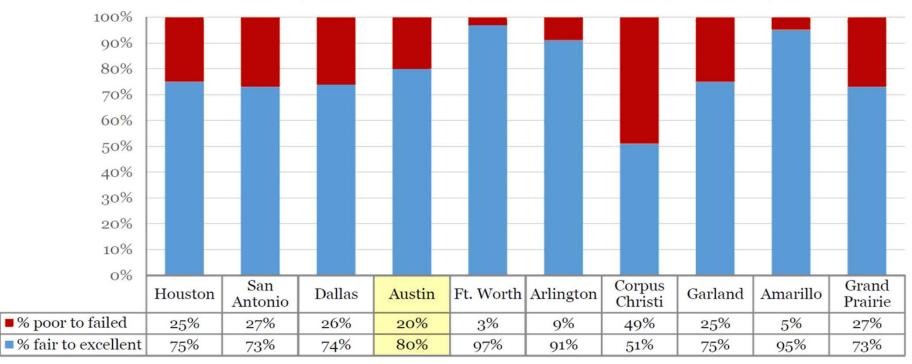
Street Inventory by District

District	1	2		3		4		5		6		7		8		9		10		Network			
Α	115 LM 12%	127 LM 1	8%	83 LM	14%	73 LM	15%	148 LM	19%	259 LM	34%	238 LM	27%	308 LM	34%	44 LM	6%	155 LM	18%	1,550 LM	20%		
В	234 LM 25%	199 LM 2	28%	148 LM	26%	167 LM	33%	228 LM	29%	309 LM	41%	301 LM	35%	319 LM	36%	119 LM	16%	293 LM	33%	2,317 LM	30%		
С	282 LM 31%	226 LM 3	32%	179 LM	31%	161 LM	32%	228 LM	29%	145 LM	19%	211 LM	24%	171 LM	19%	222 LM	29%	264 LM	30%	2,089 LM	28%		
D	180 LM 20%	108 LM 1	15%	107 LM	18%	72 LM	14%	120 LM	15%	38 LM	5%	80 LM	9%	61 LM	7%	207 LM	27%	117 LM	13%	1,090 LM	14%		
F	106 LM 12%	53 LM	7%	63 LM	11%	30 LM	6%	68 LM	8%	10 LM	1%	40 LM	5%	32 LM	4%	167 LM	22%	48 LM	6%	617 LM	8%		
Total	917 LM	713 LM		580 LM		503 LM		792 LM		761 LM		870 LM		891 LM		759 LM		877 LM		7,663 LM			
Percent	12%	% 9%		8%		7%		10%		10%		11%		12%		10%		11%					
District	1	1 2 3			4		5		6		7		8		9		10		Network				
Average Age	43 years	30 years		49 yea	irs	50 yea	50 years		36 years		25 years		ars	24 years		67 years		48 years		41 years			
Satisfactory	68%	78%		71%		80%	80%		77%		94%		5	89%		51%		81%		81% 78%			
Unsatisfactory	32%	22%		29%		20%	20%		23%		6%		14%		11%		5	19%		19%		22%	5

Districts 1, 3, 9 share the oldest core area of Austin and are generally in poorer condition

Additionally, District 9 contains Downtown and the oldest streets

Districts 2, 4, 5, 10 vary from 30 to 50 years old and have conditions near the network average


Districts 6, 7, 8 contain the newer growth areas and are generally in better condition

condition figures as of September 2016

Benchmarking Austin

Pavement Quality Statistics for the Major Texas Cities

source: 2016 Corpus Christi Street Survey

Percentages of Satisfactory and Unsatisfactory Roadways

Pavement Maintenance

Maintenance

Rehabilitation Reconstruction

Repair Maintenance

Repair or Corrective Maintenance typically fixes spot problems. Repairs are funded by the Operating Budget (Transportation User Fee).

Examples: Potholes, Level-up (small distortions), and Spot Repairs

Preventative Maintenance

Preventative Maintenance surface treatments protect the pavement surface from the effects of aging, oxidation, and weathering. Most treatments also seal cracks in the surface to keep water out of the pavement and further extend its useful life. Preventative Maintenance is funded by the Operating Budget (Transportation User Fee).

Examples: Crack Sealing, Fog Seal, Seal Coat, Slurry Seal, Overlay

before

Fog Seal

Purpose: protect surface from aging

before

City of Austin | Public Works Department

29

Slurry Seal

Purpose: seal cracks to keep water out; protect surface from aging

before

Seal Coat

Purpose: seal cracks to keep water out; protect surface from aging

City of Austin | Public Works Department

after

Overlay

restore smoothness

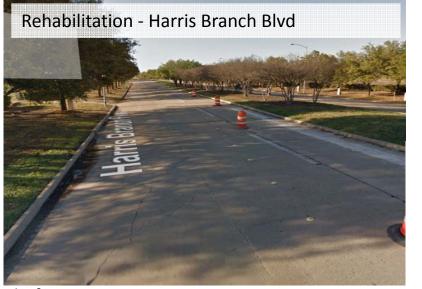
before

City of Austin | Public Works Department

32

after

Pavement Maintenance


Maintenance
Rehabilitation
Reconstruction

Street Rehabilitation

A street should be Rehabilitated when the pavement structure has deteriorated to a point where routine preventative maintenance (PM) is no longer adequate.

Rehabilitation includes full-depth repairs (FDR) to restore all damaged areas of the street prior to renewing the entire surface with an overlay. Rehabilitation is typically limited to less than 50% FDRs, but may also include damaged or ponding curb & gutter, valley gutters, and other spot structural improvements.

Street Rehabilitation is funded by the Capital Budget (GO Bonds).

before

Pavement Maintenance

Reconstruction	
Rehabilitation	
Maintenance	

Street Reconstruction

Street Reconstruction is warranted when a street deteriorates to a point where more than 50% of the pavement requires full-depth repair due to generalized failures.

Full street reconstruction consists of replacing the entire depth of the pavement section. Streets typically have an asphalt surface, granular base course, and may also include some stabilization layers to control underlying swelling and shrinking soils.

Street Reconstruction is funded by the Capital Budget (GO Bonds).

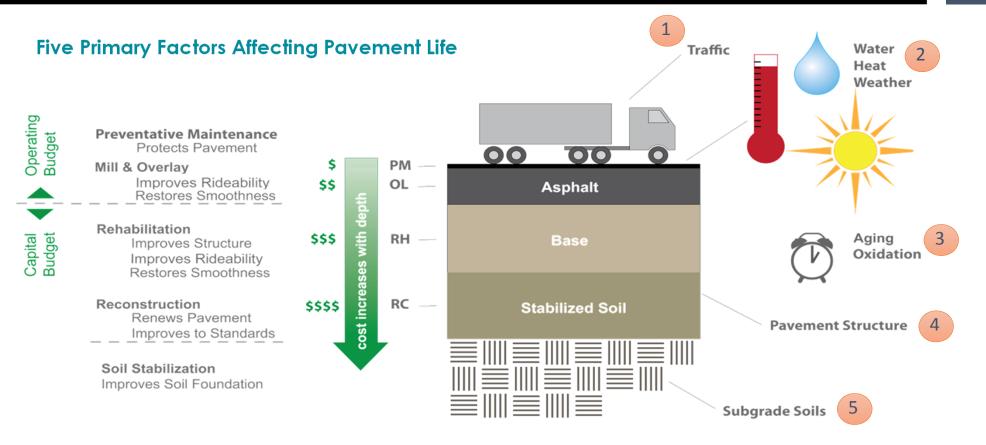

Street Reconstruction

before

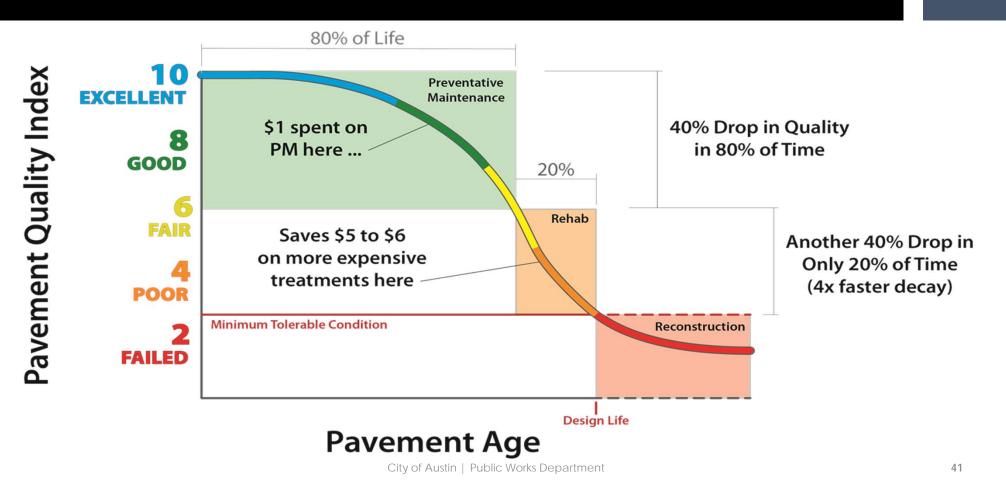
Street Reconstruction

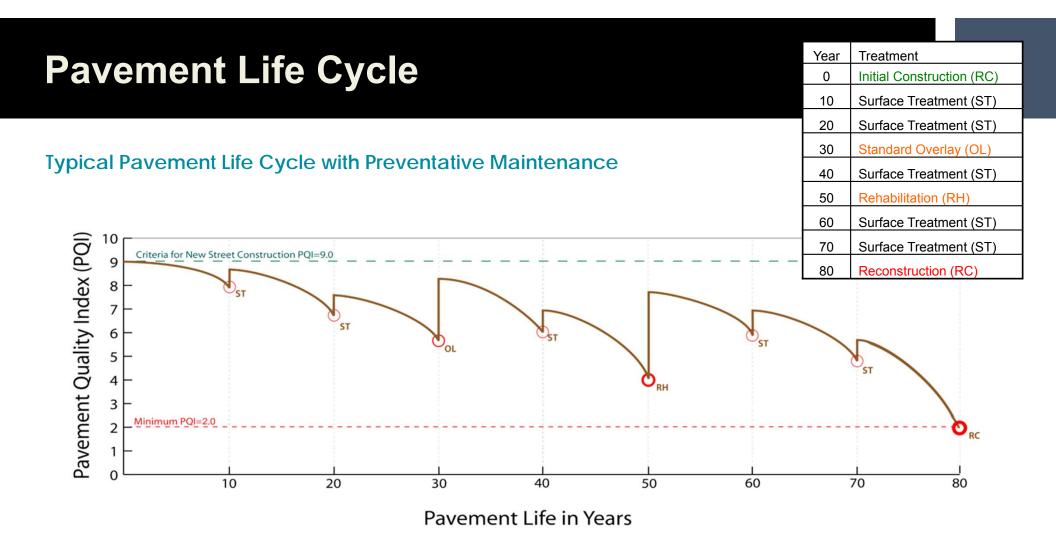
before

after



38


Street Activity Strategy by Source

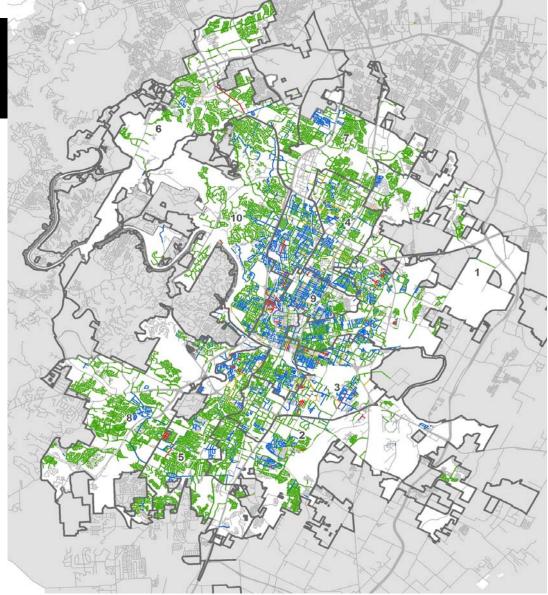

Source	Strategy Type	Treatment	Grade(s)	Purpose
Capital	Reconstruction	Reconstruction – Downtown	F	Restore pavement back to new condition
		Reconstruction - Arterial	F	Restore pavement back to new condition
		Reconstruction - Collector	F	Restore pavement back to new condition
		Reconstruction - Residential	F	Restore pavement back to new condition
	Rehabilitation	Major Rehabilitation	F	Repair spot damage, improve rideability, restore smoothness
		Minor Rehabilitation	D	Repair spot damage, improve rideability, restore smoothness
O&M	Maintenance	Structural Overlay	D	Repair spot damage, improve rideability, restore smoothness
		Overlay	C, D	Protect surface, improve rideability, restore smoothness
		Thin Overlay	С	Protect surface, improve rideability, restore smoothness
		Cape Seal	B, C	Seal cracks from water, protect surface from aging
		Microsurfacing	A, B, C	Seal cracks from water, protect surface from aging
		Slurry Seal	A, B	Seal cracks from water, protect surface from aging
		Seal Coat	A, B, C	Seal cracks from water, protect surface from aging
		Fog Seal	A, B	Protect surface from aging
		Crack Seal	A, B, C	Seal cracks from water

Pavement Life Cycle

Cost Savings with Preventative Maintenance

City of Austin | Public Works Department

Maintenance Cycle

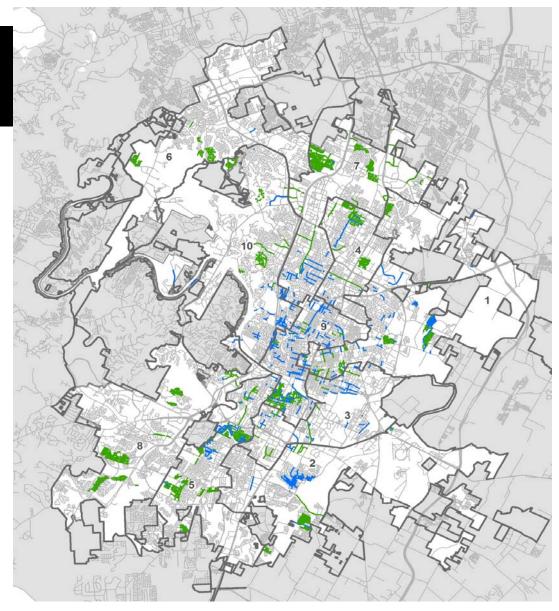

10% PM GOAL

Our 10% PM Goal has its basis in our preventative maintenance cycle. We try to touch every street at least once every 10 years with a PM surface treatment.

Thus, the 10% goal is from the intent to treat 1/10 of the network each year and results in a 10 year cycle for the network.

\$195 Million was invested in Preventative Maintenance over the last 10 years covering a total of 7,236 LM

FY2007-16 10-year Maintenance History Green – Surface Treatments Blue – Overlays Orange – Rehabilitation Red – Reconstruction



Street Maintenance Service Plan

FY17 Preventative Maintenance \$16.2 Million covering 597 LM

Street Maintenance Service Plan for FY17 by District

Green – 437 LM Surface Treatments Blue – 160 LM Overlays

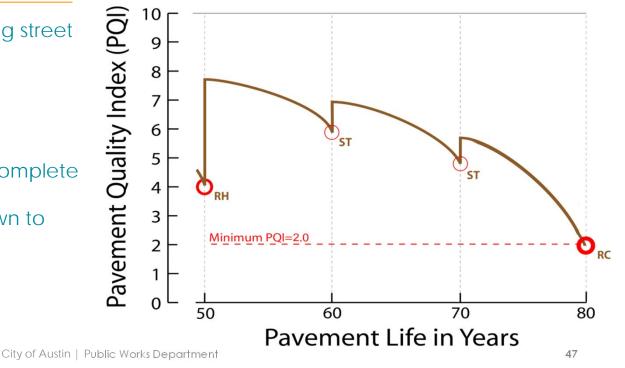
Approximate Cost of Street Activities

2016 Average Street Activity Costs (Pavement Only)							
Source	Strategy Type	Cost/Lane Mile	Treatment				
	Reconstruction	\$1,250,000/LM	Reconstruction – Downtown				
		\$750,000/LM	Reconstruction - Arterial				
Conital		\$500,000/LM	Reconstruction - Collector				
Capital		\$400,000/LM	Reconstruction - Residential				
	Rehabilitation	\$250,000/LM	Major Rehabilitation				
	Renabilitation	\$150,000/LM	Minor Rehabilitation				
		\$90,000/LM	Structural Overlay				
		\$75,000/LM	Overlay				
		\$50,000/LM	Thin Overlay				
	Maintenance	\$33,000/LM	Cape Seal				
O&M		\$25,000/LM	Microsurfacing				
		\$20,000/LM	Slurry Seal				
		\$18,000/LM	Seal Coat				
		\$6,000/LM	Fog Seal				
		\$1,500/LM	Crack Seal				

Street Prioritization

Methodology used by Pavement Management Information System (PMIS) to Select and Prioritize Street Maintenance and Capital Projects

- Initialize Multi-Constraint Analysis
 - Establish Budgets
 - Set Performance Goals
- Select Benefit Calculation
 - Maximize Distress or Roughness Index
- Select Treatment Candidates based on Condition Data
 - PMIS uses Decision Trees to select the correct treatments
 - Calculates a Benefit value for each treatment
- Perform Optimization Analysis
 - PMIS searches for the best set of candidate maintenance and reconstruction projects to maximize the total Benefit within budget and performance constraints


Street Prioritization

Methodology used by Pavement Management Information System (PMIS) to Select and Prioritize Street Maintenance and Capital Projects

The two most critical factors for selecting street reconstruction projects are

- 1) Extensive Street Roughness
- 2) Severe Damage and Distress

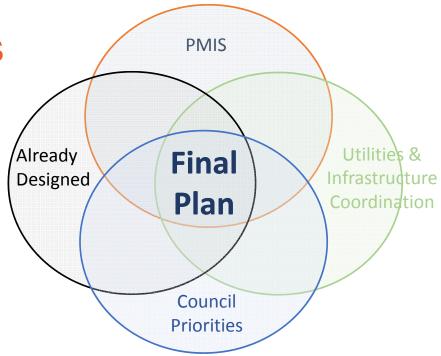
No maintenance strategy other than complete reconstruction will be practical or costeffective after the PQI deteriorates down to the minimum tolerable level.

Plan Development Process

PMIS Candidate Projects

The Pavement Management process identifies a proposed annual maintenance plan and new CIP project candidates.

Partially Designed or Shovel-Ready


A higher priority is given to projects with some or all design work completed.

Council Priorities

City Council policies and concerns are given priority in project selection.

Utilities & Infrastructure Coordination

Coordination processes maximize benefits and attempt to minimize disruption.

Coordination Processes

Objective of Coordination

Coordinating work between the City departments and our partnering agencies is cost efficient and maximizes dig-once opportunities.

Annual Service Plan

SBO publishes an Annual Service Plan of all planned street maintenance activities. This plan is shared with all infrastructure departments within the City to coordinate all capital projects and Citywide O&M.

Austin Water

A special interdepartmental coordination and clearance process is used between PWD and AWU for all Overlay, Rehabilitation, and Reconstruction projects to assure each is adequately protected.

Coordination Processes

Austin Transportation

The surface treatment plans are shared and coordinated with the Bike Program and ATD planning and engineering staff to assure striping reconfigurations for bike lanes and other transportation needs are addressed.

Other Major Utilities

Monthly Asset Management Coordination meetings using GIS mapping and the IMMPACT system reveals dig once opportunities with the other major utilities and partnering departments/agencies and coordination with Special Events.

Coordination Outside the Agency

The Annual Service Plan and CIP projects are distributed through the Austin Utility Location and Coordination Committee (AULCC) for additional coordination with franchise utilities, partnering agencies, and all City departments.

Public

The Annual Service Plan is posted and available for public download on the internet.

CITY OF AUSTIN PUBLIC WORKS DEPARTMENT CONNECTING YOU ALL AROUND AUSTIN

QUESTIONS + ANSWERS

Robert Hinojosa PE, Interim Director Public Works Department robert.hinojosa@austintexas.gov 512.974.7158

