

Travis County

Laboratory Number: 533051
Customer Sample ID: 1259
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis Results CL* Units ExLow VLow Low Mod High VHigh Excess.	<mark>0sqft</mark> /1000sqft <mark>000sqft</mark> 00sqft
Conductivity 261 (-) umho/cm None cu. Fertilizer Recommendation Fertil	<mark>0sqft</mark> /1000sqft <mark>000sqft</mark> 00sqft
Nitrate-N 34 (-) ppm**	<mark>0sqft</mark> /1000sqft <mark>000sqft</mark> 00sqft
Phosphorus	/1000sqft <mark>000sqft</mark> 00sqft
Potassium	000sqft 00sqft
Calcium 20,300 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	00sqft
Magnesium 347 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	· ·
Sulfur 32 (13) ppm	00sgft
Sodium 27 (-) ppm IIIII IIIIII IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Iron Zinc Manganese Copper Boron	0sqft
Zinc Manganese Copper Boron	
Manganese Copper Boron	
Copper Boron	
Boron	
Limestone Requirement 0.00 lbs/1000s	
	qft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533052
Customer Sample ID: 1260
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.3	(6.5)	-	Slightly Alkaline
Conductivity	365	(-)	umho/cm	02
Nitrate-N	30	(-)	ppm**	
Phosphorus	162	(50)	ppm	
Potassium	277	(175)	ppm	
Calcium	8,942	(180)	ppm	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Magnesium	588	(50)	ppm	
Sulfur	58	(13)	ppm	
Sodium	24	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrote N. codium and conductivity) is recommended **pmm mar/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533053
Customer Sample ID: 1261
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.3	(6.5)	-	Slightly A	lkaline					
Conductivity	329	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**			IIIIIIIIII	Ш			0 lbs N/1000sqft
Phosphorus	194	(50)	ppm					111111111111111111111111111111111111111	III	0 lbs P2O5/1000sqft
Potassium	297	(175)	ppm					111111		0 lbs K20/1000sqft
Calcium	9,573	(180)	ppm	1111111111111				(11111111111111111111111111111111111111	II	0 lbs Ca/1000sqft
/lagnesium	538	(50)	ppm	1111111111111					II	0 lbs Mg/1000sgft
Sulfur	60	(13)	ppm	1111111111111				111111111111111111111111111111111111111	II	0 lbs S/1000sqft
Sodium	23	(-)	ppm	IIII						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron							-			
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533054
Customer Sample ID: 1262
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	123	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	10	(50)	ppm							3.2 lbs P2O5/1000sqft
Potassium	255	(175)	ppm	11111111111				11111		0 lbs K20/1000sqft
Calcium	30,202	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	304	(50)	ppm			IIIIIIIIII		1111111		0 lbs Mg/1000sgft
Sulfur	33	(13)	ppm	111111111111				1111111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533055
Customer Sample ID: 1263
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.	
рН	7.9	(6.5)	-	Mod. Alkaline	
Conductivity	865	(-)	umho/cm	Slight CL. Fertilizer Recommen	nded
Nitrate-N	62	(-)	ppm**		
Phosphorus	621	(50)	ppm	1 IIIIIIII	sqft
Potassium	2929	(175)	ppm		qft
Calcium	16,809	(180)	ppm		ft
Magnesium	826	(50)	ppm		ft
Sulfur	145	(13)	ppm		
Sodium	94	(-)	ppm		
Iron					
Zinc					
Manganese					
Copper					
Boron					
Limestone Requirement				0.00 lbs/1000sqft	
				line pitrate NL codium and conductivity) is recommended **prop_ma/l/a	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533056
Customer Sample ID: 1264
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	Results	CL*	Units							_
Analysis			Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
pH	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	156	(-)	umho/cm	None			CL	* .		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	98	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	226	(175)	ppm							0 lbs K20/1000sqft
Calcium	22,844	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	449	(50)	ppm					uuuuu (0 lbs Mg/1000sgft
Sulfur	29	(13)	ppm	111111111111				IIIII		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron							ļ			
Zinc							!			
Manganese							i			
Copper							i			
Boron							!			
Limestone Requirement				·			<u>.</u>	·	·	0.00 lbs/1000sqft
CL -Critical lovel is the point w							_			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533057
Customer Sample ID: 1265
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline	!				
Conductivity	2,060	(-)	umho/cm	High			CL	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	421	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ш	0 lbs P2O5/1000sqft
Potassium	1570	(175)	ppm		ļ)	mmi	Ш	0 lbs K20/1000sqft
Calcium	16,137	(180)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0 lbs Ca/1000sqft
Magnesium	621	(50)	ppm	1111111111				mmi	I	0 lbs Mg/1000sgft
Sulfur	660	(13)	ppm	1111111111		1111111111	1000000			0 lbs S/1000sqft
Sodium	441	(-)	ppm	1111111111)			
Iron										
Zinc										
Manganese							į			
Copper							;			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533058
Customer Sample ID: 1266
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.	
рН	7.5	(6.5)	-	Slightly Alkaline	
Conductivity	534	(-)	umho/cm	Slight CL. Fertilizer Recommen	nded
Nitrate-N	38	(-)	ppm**		
Phosphorus	189	(50)	ppm		sqft
Potassium	463	(175)	ppm		qft
Calcium	8,907	(180)	ppm	0 lbs Ca/1000sqf	ft
Magnesium	712	(50)	ppm		ft
Sulfur	144	(13)	ppm	0 lbs S/1000sqft	
Sodium	20	(-)	ppm		
Iron					
Zinc					
Manganese					
Copper					
Boron					
Limestone Requirement				0.00 lbs/1000sqft	
01 0 20 11 12 01 2 0					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533059
Customer Sample ID: 1267
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	1,778	(-)	umho/cm	High			CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	298	(50)	ppm				111111111111111111111111111111111111111	11111111111	Ш	0 lbs P2O5/1000sqft
Potassium	2038	(175)	ppm				111111111111)))))))))))))))	111111	0 lbs K20/1000sqft
Calcium	22,459	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	625	(50)	ppm	11111111111				1111111111111	II	0 lbs Mg/1000sgft
Sulfur	319	(13)	ppm				11111111111	11111111111		0 lbs S/1000sqft
Sodium	452	(-)	ppm)			
Iron										
Zinc							ŀ			
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533061
Customer Sample ID: 1268
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	Results	CL*	Units	Ful	M				Var	-
Analysis			Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH	7.7	(6.5)	-	Mod. Alk	caline					5 (11) 5
Conductivity	164	(-)	umho/cm	None			Cl	.*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	22	(50)	ppm							2.2 lbs P2O5/1000sqft
Potassium	289	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	15,011	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	679	(50)	ppm	11111111111	111111111111			11111111111	II .	0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm				11111111111	III 📗		0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
Zinc										
Manganese							i			
Copper										
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft
-										·
CL -Critical lovel is the point w							_			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533062
Customer Sample ID: 1269
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow V	/Low	Low	Mod	High	VHigh	Excess.
ЭН	7.3	(6.5)	-	Slightly Alk	aline					
Conductivity	399	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	63	(-)	ppm**	111111111111111111111111111111111111111	ШШ	ШШШ		IIIII		0 lbs N/1000sqft
Phosphorus	312	(50)	ppm						111111	0 lbs P2O5/1000sqft
Potassium	575	(175)	ppm		ШШ				II	0 lbs K20/1000sqft
Calcium	6,672	(180)	ppm	111111111111111111111111111111111111111					II	0 lbs Ca/1000sqft
/lagnesium	280	(50)	ppm		IIIIIIIII	ШШШ		IIIIII		0 lbs Mg/1000sgft
Sulfur	33	(13)	ppm	111111111111111111				IIIIIII		0 lbs S/1000sqft
Sodium	40	(-)	ppm	1111111						
ron										
linc										
Manganese							i			
Copper							ı			
Boron							¦			
imestone Requirement				·						0.00 lbs/1000sqft
Critical laval in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533063
Customer Sample ID: 1270
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G									
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	403	(-)	umho/cm	None		CL	.*		Fertilizer Recommended
litrate-N	34	(-)	ppm**	111111111111111111111111111111111111111		111111			0 lbs N/1000sqft
Phosphorus	325	(50)	ppm					111111	0 lbs P2O5/1000sqft
Potassium	975	(175)	ppm			Human		II	0 lbs K20/1000sqft
Calcium	24,981	(180)	ppm	111111111111111111111111111111111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		II	0 lbs Ca/1000sqft
/lagnesium	554	(50)	ppm			,,,,,,,,,,,,,,,		II	0 lbs Mg/1000sgft
Sulfur	94	(13)	ppm	1111111111				111111	0 lbs S/1000sqft
Sodium	122	(-)	ppm		I				
ron									
linc						!			
/langanese						i			
Copper						l			
Boron						-			
imestone Requirement					•				0.00 lbs/1000sqft
•									·
Cl. Critical laval is the resint w									

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533064
Customer Sample ID: 1271

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.3	(6.5)	-	Slightly	Alkaline)				
Conductivity	399	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	24	(-)	ppm**		11111111111					0.2 lbs N/1000sqft
Phosphorus	450	(50)	ppm		11111111111		111111111111	111111111111	111111	0 lbs P2O5/1000sqft
Potassium	293	(175)	ppm		11111111111		111111111111	111111		0 lbs K20/1000sqft
Calcium	6,293	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	1,185	(50)	ppm	11111111111	11111111111			///////////////////////////////////////	III	0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm	11111111111	11111111111			11111111111		0 lbs S/1000sqft
Sodium	44	(-)	ppm	11111111						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533065
Customer Sample ID: 1272
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.6	(6.5)	-	Mod. Alk	aline					
Conductivity	261	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	70	(50)	ppm					111111		0 lbs P2O5/1000sqft
Potassium	278	(175)	ppm					111111		0 lbs K20/1000sqft
Calcium	18,573	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	553	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	42	(13)	ppm	11111111111				1111111111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron							l			
imestone Requirement				•						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533066
Customer Sample ID: 1273
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.7	(6.5)	-	Mod. Al	kaline					
201	(-)	umho/cm	None			CI	*		Fertilizer Recommended
9	(-)	ppm**	11111111						1 lbs N/1000sqft
232	(50)	ppm				•	111111111111111111111111111111111111111	IIII	0 lbs P2O5/1000sqft
571	(175)	ppm	1111111111			•	hmmi	II	0 lbs K20/1000sqft
6,882	(180)	ppm						II	0 lbs Ca/1000sqft
383	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0 lbs Mg/1000sgft
34	(13)	ppm	1111111111				1111111		0 lbs S/1000sqft
13	(-)	ppm	II						
									0.00 lbs/1000sqft
	7.7 201 9 232 571 6,882 383 34	Results CL* 7.7 (6.5) 201 (-) 9 (-) 232 (50) 571 (175) 6,882 (180) 383 (50) 34 (13)	Results CL* Units 7.7 (6.5) - 201 (-) umho/cm 9 (-) ppm** 232 (50) ppm 571 (175) ppm 6,882 (180) ppm 383 (50) ppm 34 (13) ppm	Results CL* Units ExLow 7.7 (6.5) - Mod. All 201 (-) umho/cm None 9 (-) ppm*** IIIIIIIII 232 (50) ppm IIIIIIIIIII 571 (175) ppm IIIIIIIIIII 6,882 (180) ppm IIIIIIIIIIIIIIII 383 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.7 (6.5) - Mod. Alkaline 201 (-) umho/cm None 9 (-) ppm** 232 (50) ppm	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533067
Customer Sample ID: 1274
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	2,296	(-)	umho/cm	High			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	517	(50)	ppm		ШШШ		ļuuuuu(ШШШ	1111111	0 lbs P2O5/1000sqft
Potassium	1507	(175)	ppm					11111111111	Ш	0 lbs K20/1000sqft
Calcium	9,299	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	571	(50)	ppm		11111111111				II	0 lbs Mg/1000sgft
Sulfur	959	(13)	ppm		11111111111	ШШШ	111111111111			0 lbs S/1000sqft
Sodium	306	(-)	ppm		11111111111	1111111				
Iron										
Zinc										
Manganese							į			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
*CL Critical lavel in the maintu										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533068
Customer Sample ID: 1275
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	line					
Conductivity	301	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	19	(-)	ppm**			III				0.5 lbs N/1000sqft
Phosphorus	22	(50)	ppm	11111111111111						2.2 lbs P2O5/1000sqft
Potassium	422	(175)	ppm			1111111111	HIIIIIII)	ШШЩ	ı	0 lbs K20/1000sqft
Calcium	18,484	(180)	ppm	11111111111111					II	0 lbs Ca/1000sqft
Magnesium	381	(50)	ppm	1111111111111		11111111111				0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm					11111		0 lbs S/1000sqft
Sodium	31	(-)	ppm	1111111						
Iron										
Zinc										
Manganese							į			
Copper							j			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533069
Customer Sample ID: 1276

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	242	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	ШШ						1.1 lbs N/1000sqft
Phosphorus	100	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	409	(175)	ppm				111111111111	hmmi	ı	0 lbs K20/1000sqft
Calcium	7,418	(180)	ppm						ll .	0 lbs Ca/1000sqft
Magnesium	335	(50)	ppm	11111111111	111111111111		11111111111	10000		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm		111111111111		111111111111	111		0 lbs S/1000sqft
Sodium	10	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533070
Customer Sample ID: 1277
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.3	(6.5)	-	Slightly	Alkaline					
Conductivity	41	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
litrate-N	16	(-)	ppm**	11111111111						0.7 lbs N/1000sqft
Phosphorus	26	(50)	ppm	11111111111						1.9 lbs P2O5/1000sqft
otassium	340	(175)	ppm	11111111111		1111111111		,,,,,,,,,,,,,		0 lbs K20/1000sqft
Calcium	5,966	(180)	ppm	11111111111						0 lbs Ca/1000sqft
/lagnesium	528	(50)	ppm	11111111111		11111111111			II	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
Sodium	42	(-)	ppm	11111111						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement				·						0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533071
Customer Sample ID: 1278
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkaline					
Conductivity	243	(-)	umho/cm	None		CI	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**	111111111111111111111111111111111111111					0.8 lbs N/1000sqft
Phosphorus	380	(50)	ppm		IIIIIIIII	ļiiiiiiiii	humi	IIIII	0 lbs P2O5/1000sqft
Potassium	793	(175)	ppm		IIIIIIIII	•	ļuunui ļ	II .	0 lbs K20/1000sqft
Calcium	24,858	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	635	(50)	ppm		IIIIIIIII	•		II .	0 lbs Mg/1000sgft
Sulfur	88	(13)	ppm			(111111111111111111111111111111111111		Ш	0 lbs S/1000sqft
Sodium	50	(-)	ppm	1111111111					
Iron									
Zinc							!		
Manganese									
Copper									
Boron									
Limestone Requirement									0.00 lbs/1000sqft
CL Critical lavel in the maint w									

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533072
Customer Sample ID: 1279
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	187	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
litrate-N	6	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	29	(50)	ppm	11111111111			l ¦			1.6 lbs P2O5/1000sqft
otassium	184	(175)	ppm	11111111111)		0 lbs K20/1000sqft
Calcium	9,321	(180)	ppm	11111111111	:				II	0 lbs Ca/1000sqft
Magnesium	357	(50)	ppm	11111111111						0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm					11		0 lbs S/1000sqft
Sodium	9	(-)	ppm	1						
ron										
linc										
/langanese							i			
Copper							i			
Boron							l I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533073
Customer Sample ID: 1280
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow VL	ow L	ow	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly Alkal	ine					
Conductivity	303	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**		ШШ	ШЩ				0 lbs N/1000sqft
Phosphorus	137	(50)	ppm		ШШ		шшщ	mmmi	I	0 lbs P2O5/1000sqft
Potassium	440	(175)	ppm		Ш	ШЩ	шшщ	mmi		0 lbs K20/1000sqft
Calcium	6,974	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	438	(50)	ppm	111111111111111111111111111111111111111	ШШШ		шшш	mmmi		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm		ШШ	ШШ	шшш			0 lbs S/1000sqft
Sodium	5	(-)	ppm	ı						
Iron							, 1			
Zinc							-			
Manganese							į			
Copper							i			
Boron							 			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533074
Customer Sample ID: 1281
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.	
рН	7.8	(6.5)	-	Mod. Alkaline	
Conductivity	242	(-)	umho/cm	None CL. Fertilizer Recomme	ended
Nitrate-N	22	(-)	ppm**		ft
Phosphorus	377	(50)	ppm		00sqft
Potassium	429	(175)	ppm		sqft
Calcium	14,234	(180)	ppm		qft
Magnesium	210	(50)	ppm		gft
Sulfur	23	(13)	ppm	1111111111111111111111111111111111111	ft
Sodium	5	(-)	ppm		
Iron					
Zinc					
Manganese					
Copper					
Boron					
Limestone Requirement				0.00 lbs/1000sqft	
				no nitrate N. codium and conductivity) is recommended **non-marker	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533075
Customer Sample ID: 1282

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis Res PH Conductivity Nitrate-N Phosphorus	7.4 424 81 104 424	(6.5) (-) (-) (50)	- umho/cm ppm**	Slightly None	VLow Alkaline	Mod	High	VHigh	Excess. Fertilizer Recommended
Conductivity <mark>Nitrate-N</mark>	424 81 104	(-) (-) (50)	ppm**	None		CI			Fortilizer Recommended
Nitrate-N	81 104	(-)	ppm**		i	CI			Fortilizar Docommondad
	104	(50)							reitilizei kecollillellueu
Phosphorus						:			0 lbs N/1000sqft
	424		ppm				mmi		0 lbs P2O5/1000sqft
Potassium		(175)	ppm				mmi		0 lbs K20/1000sqft
Calcium 9,	218	(180)	ppm				mmmi		0 lbs Ca/1000sqft
Magnesium	404	(50)	ppm	ШШШ		111111111111	mmi		0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	11111111111		111111111111			0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш					
Iron									
Zinc									
Manganese									
Copper						i			
Boron									
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533076
Customer Sample ID: 1283
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	192	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111111						1 lbs N/1000sqft
Phosphorus	14	(50)	ppm			Ш				2.8 lbs P2O5/1000sqft
Potassium	230	(175)	ppm		1111111111	IIIIIIIIII	11111111111	ווון		0 lbs K20/1000sqft
Calcium	13,066	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	344	(50)	ppm		1111111111	IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm				11111111111	111		0 lbs S/1000sqft
Sodium	139	(-)	ppm		ШШЩ	I				
ron										
Zinc Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533077
Customer Sample ID: 1284
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly All	kaline					
Conductivity	684	(-)	umho/cm	Slight			CL			Fertilizer Recommended
Nitrate-N	88	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	130	(50)	ppm			:				0 lbs P2O5/1000sqft
Potassium	765	(175)	ppm							0 lbs K20/1000sqft
Calcium	11,566	(180)	ppm	111111111111111111111111111111111111111						0 lbs Ca/1000sqft
Magnesium	682	(50)	ppm	111111111111111111111111111111111111111	IIIIIIIII			ШШЩ	ı	0 lbs Mg/1000sgft
Sulfur	67	(13)	ppm		ШШШ		mm	mmmi	ı	0 lbs S/1000sqft
Sodium	33	(-)	ppm	1111111						
Iron							i			
Zinc							- :			
Manganese							į			
Copper							i			
Boron							· i			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533078 Customer Sample ID: 1285 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	235	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
litrate-N	11	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	25	(50)	ppm				l			2 lbs P2O5/1000sqft
otassium	277	(175)	ppm	111111111111	11111111111			111111		0 lbs K20/1000sqft
Calcium	10,121	(180)	ppm			: :			II	0 lbs Ca/1000sqft
Magnesium	256	(50)	ppm		11111111111			111111		0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm	111111111111	11111111111)		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
ron										
linc										
/langanese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533079
Customer Sample ID: 1286
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alka	line					
Conductivity	267	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**			III				0.6 lbs N/1000sqft
Phosphorus	82	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	458	(175)	ppm		ШШ	1111111111	mmm	mmi	ı	0 lbs K20/1000sqft
Calcium	7,176	(180)	ppm	111111111111111111111111111111111111111					II	0 lbs Ca/1000sqft
Magnesium	266	(50)	ppm				111111111111111111111111111111111111111	111111		0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm	111111111111111			шш	III		0 lbs S/1000sqft
Sodium	36	(-)	ppm	1111111						
Iron							ľ			
Zinc										
Manganese										
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533080
Customer Sample ID: 1287
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alka	line					
Conductivity	188	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	22	(-)	ppm**			IIIIIII				0.3 lbs N/1000sqft
Phosphorus	98	(50)	ppm	111111111111111						0 lbs P2O5/1000sqft
Potassium	482	(175)	ppm			11111111111	mmm	mmi	ı	0 lbs K20/1000sqft
Calcium	10,473	(180)	ppm			:			II .	0 lbs Ca/1000sqft
Magnesium	249	(50)	ppm				111111111111111111111111111111111111111	Ш		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm				шш	IIIII		0 lbs S/1000sqft
Sodium	7	(-)	ppm	1						
Iron										
Zinc							ļ.			
Manganese										
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533081
Customer Sample ID: 1288
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	128	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	78	(50)	ppm				11111111111	1111111		0 lbs P2O5/1000sqft
Potassium	285	(175)	ppm			11111111111	111111111111	ווווון		0 lbs K20/1000sqft
Calcium	6,338	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	405	(50)	ppm	11111111111	111111111111		11111111111		I	0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm		111111111111		111111111111	Ш		0 lbs S/1000sqft
Sodium	10	(-)	ppm	ı						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533082
Customer Sample ID: 1289
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow \	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkali	ne					
Conductivity	308	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	16	(-)	ppm**		ШШ					0.6 lbs N/1000sqft
Phosphorus	219	(50)	ppm		ШШ		mmi		IIII	0 lbs P2O5/1000sqft
Potassium	210	(175)	ppm	111111111111111111	ШЩ	IIIIIIIII	mmm	II .		0 lbs K20/1000sqft
Calcium	10,402	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	345	(50)	ppm		ШШШ		mmi			0 lbs Mg/1000sgft
Sulfur	39	(13)	ppm		ШШШ		шшф			0 lbs S/1000sqft
Sodium	210	(-)	ppm		ШШ	II .				
Iron							;			
Zinc										
Manganese							į			
Copper							i			
Boron							· · · · · ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533083
Customer Sample ID: 1290
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. Al	kaline					
130	(-)	umho/cm	None			CI	*		Fertilizer Recommended
9	(-)	ppm**	11111111						1 lbs N/1000sqft
137	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ll .	0 lbs P2O5/1000sqft
291	(175)	ppm	1111111111			•	ן ווווון		0 lbs K20/1000sqft
11,859	(180)	ppm						II	0 lbs Ca/1000sqft
312	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111		0 lbs Mg/1000sgft
27	(13)	ppm	1111111111				111111		0 lbs S/1000sqft
11	(-)	ppm	II						
									0.00 lbs/1000sqft
	7.8 130 9 137 291 11,859 312 27	Results CL* 7.8 (6.5) 130 (-) 9 (-) 137 (50) 291 (175) 11,859 (180) 312 (50) 27 (13)	Results CL* Units 7.8 (6.5) - 130 (-) umho/cm 9 (-) ppm** 137 (50) ppm 291 (175) ppm 11,859 (180) ppm 312 (50) ppm 27 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. Al 130 (-) umho/cm None 9 (-) ppm*** IIIIIIIII 137 (50) ppm IIIIIIIIIII 291 (175) ppm IIIIIIIIIII 11,859 (180) ppm IIIIIIIIIIIIIIII 27 (13) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 130 (-) umho/cm None 9 (-) ppm** 137 (50) ppm	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 130 (-) umho/cm None - 9 (-) ppm*** IIIIIIII IIIIIIIII 137 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533084
Customer Sample ID: 1291
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	line					
Conductivity	243	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**			I				0.6 lbs N/1000sqft
Phosphorus	96	(50)	ppm				шшц	mmmi	l	0 lbs P2O5/1000sqft
Potassium	299	(175)	ppm				mmm	111111		0 lbs K20/1000sqft
Calcium	21,144	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	335	(50)	ppm	111111111111111111111111111111111111111				111111111		0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm				шш	1111111		0 lbs S/1000sqft
Sodium	31	(-)	ppm	1111111						
Iron							¦			
Zinc							ļ			
Manganese										
Copper							i			
Boron							ŀ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533085 Customer Sample ID: 1292 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	251	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	13	(-)	ppm**		IIII					0.8 lbs N/1000sqft
hosphorus	142	(50)	ppm					IIIIIIIII	II	0 lbs P2O5/1000sqft
Potassium	517	(175)	ppm	11111111111		11111111111		mmi	l	0 lbs K20/1000sqft
Calcium	20,079	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	283	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	11111111111						0 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
ron										
Zinc Zinc										
Manganese							i			
Copper							ľ			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
C. Critical laval is the paint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533086
Customer Sample ID: 1293
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	6.9	(6.5)	-	Slightly	Acid					
Conductivity	769	(-)	umho/cm	Slight			CI			Fertilizer Recommended
Nitrate-N	67	(-)	ppm**	11111111111			:			0 lbs N/1000sqft
Phosphorus	530	(50)	ppm	111111111111			11111111111	1111111111	1111111	0 lbs P2O5/1000sqft
Potassium	325	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	4,912	(180)	ppm	11111111111			111111111111	11111		0 lbs Ca/1000sqft
/lagnesium	282	(50)	ppm	11111111111			111111111111	111111		0 lbs Mg/1000sgft
Sulfur	577	(13)	ppm				11111111111		111111111111	0 lbs S/1000sqft
Sodium	18	(-)	ppm	III						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
CI - Critical lovel is the point w		:e: 1	tul t / l	lin n nituata	. NI	P.	باد ما د د د	41141		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533087 Customer Sample ID: 1294

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.5	(6.5)	-	Slightly Alkaline
Conductivity	381	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	36	(-)	ppm**	
Phosphorus	239	(50)	ppm	
Potassium	353	(175)	ppm	
Calcium	7,721	(180)	ppm	
Magnesium	333	(50)	ppm	
Sulfur	36	(13)	ppm	
Sodium	9	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533088
Customer Sample ID: 1295
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.6	(6.5)	-	Mod. Alka	line					
264	(-)	umho/cm	None			CL	*		Fertilizer Recommended
8	(-)	ppm**	1111111						1.1 lbs N/1000sqft
82	(50)	ppm				шшц			0 lbs P2O5/1000sqft
332	(175)	ppm		ШШ		mmm			0 lbs K20/1000sqft
17,268	(180)	ppm						II	0 lbs Ca/1000sqft
293	(50)	ppm				111111111111111111111111111111111111111	IIIII		0 lbs Mg/1000sgft
14	(13)	ppm				шш	ı		0 lbs S/1000sqft
7	(-)	ppm	1						
						ľ			
						į			
						i			
						I I			
									0.00 lbs/1000sqft
	7.6 264 8 82 332 17,268 293 14	Results CL* 7.6 (6.5) 264 (-) 82 (50) 332 (175) 17,268 (180) 293 (50) 14 (13)	Results CL* Units 7.6 (6.5) - 264 (-) umho/cm 8 (-) ppm** 82 (50) ppm 332 (175) ppm 17,268 (180) ppm 293 (50) ppm 14 (13) ppm	Results CL* Units ExLow 7.6 (6.5) - Mod. Alka 264 (-) umho/cm None 8 (-) ppm** IIIIIII 82 (50) ppm IIIIIIIIIIIII 332 (175) ppm IIIIIIIIIIIIIII 17,268 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 7.6 (6.5) - Mod. Alkaline - 264 (-) umho/cm None - 8 (-) ppm*** IIIIIII 82 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533089
Customer Sample ID: 1296
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. All	caline					
Conductivity	277	(-)	umho/cm	None			. с	L*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**	11111111111						0.7 lbs N/1000sqft
Phosphorus	160	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	478	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	17,510	(180)	ppm	: ;		:	:		II	0 lbs Ca/1000sqft
Magnesium	338	(50)	ppm					:		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533091
Customer Sample ID: 1297
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.2	(6.5)	-	Slightly	Acid					
Conductivity	1,692	(-)	umho/cm	High			С	L*		Fertilizer Recommended
Nitrate-N	246	(-)	ppm**						111111111111	0 lbs N/1000sqft
Phosphorus	178	(50)	ppm		ШШШ	(11111111111111111111111111111111111111		ļumumi	III	0 lbs P2O5/1000sqft
Potassium	465	(175)	ppm		11111111111	(111111111111	111111111111	ļ11111111111	ı	0 lbs K20/1000sqft
Calcium	1,011	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	199	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	203	(13)	ppm					11111111111	111111111	0 lbs S/1000sqft
Sodium	5	(-)	ppm	ı						
Iron								 		
Zinc								 		
Manganese										
Copper										
Boron										
Limestone Requirement										10.00 lbs/1000sqft
CL Critical lawal in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533092
Customer Sample ID: 1298
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.5	(6.5)	-	Slightly Alkaline
Conductivity	404	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	19	(-)	ppm**	
Phosphorus	429	(50)	ppm	
Potassium	598	(175)	ppm	
Calcium	17,941	(180)	ppm	
Magnesium	638	(50)	ppm	
Sulfur	61	(13)	ppm	
Sodium	68	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				diagraphysis N. codium and conductivity) is recommended ***prop pag//cr

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533093
Customer Sample ID: 1299
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	114	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIII						1.2 lbs N/1000sqft
Phosphorus	80	(50)	ppm				шшц			0 lbs P2O5/1000sqft
Potassium	291	(175)	ppm	11111111111			11111111111	IIIIII		0 lbs K20/1000sqft
Calcium	27,811	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	454	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	38	(13)	ppm	11111111111			11111111111			0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
Iron							¦			
Zinc										
Manganese							!			
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533094
Customer Sample ID: 1301
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	194	(-)	umho/cm	None			CI			Fertilizer Recommended
litrate-N	11	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
Phosphorus	23	(50)	ppm	111111111111			l	l		2.1 lbs P2O5/1000sqft
Potassium	239	(175)	ppm	111111111111	11111111111			111		0 lbs K20/1000sqft
Calcium	21,967	(180)	ppm						: :	0 lbs Ca/1000sqft
/lagnesium	384	(50)	ppm		11111111111					0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm					1111111		0 lbs S/1000sqft
Sodium	10	(-)	ppm	II						
ron										
Zinc Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533095 Customer Sample ID: 1302 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	204	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	19	(-)	ppm**	11111111111		Ш				0.5 lbs N/1000sqft
Phosphorus	45	(50)	ppm	11111111111						0.4 lbs P2O5/1000sqft
Potassium	281	(175)	ppm	11111111111				IIIIII		0 lbs K20/1000sqft
Calcium	23,114	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	343	(50)	ppm	11111111111						0 lbs Mg/1000sgft
Sulfur	35	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533096 Customer Sample ID: 1303 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		CL*	Unito							_
Analysis	Results		Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	176	(-)	umho/cm	None			CL	٠.		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	118	(50)	ppm	111111111111					I	0 lbs P2O5/1000sqft
Potassium	193	(175)	ppm							0 lbs K20/1000sqft
Calcium	7,167	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	408	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm			IIIIIIIIII	шин			0 lbs S/1000sqft
Sodium	5	(-)	ppm	ı						
ron							¦			
Zinc							!			
Vlanganese							į			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL -Critical layed is the point w				P 24 4			_			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533097
Customer Sample ID: 1304
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.7	(6.5)	-	Mod. Alka	line					
271	(-)	umho/cm	None			CL	*		Fertilizer Recommended
18	(-)	ppm**			Ш				0.5 lbs N/1000sqft
72	(50)	ppm				шшц	IIIIII		0 lbs P2O5/1000sqft
321	(175)	ppm				mmm			0 lbs K20/1000sqft
7,019	(180)	ppm							0 lbs Ca/1000sqft
423	(50)	ppm				111111111111111111111111111111111111111		I	0 lbs Mg/1000sgft
18	(13)	ppm	11111111111111111			шш	III		0 lbs S/1000sqft
8	(-)	ppm	1						
						i i			
						ļ.			
						i			
						¦			
									0.00 lbs/1000sqft
	7.7 271 18 72 321 7,019 423 18	Results CL* 7.7 (6.5) 271 (-) 18 (-) 72 (50) 321 (175) 7,019 (180) 423 (50) 18 (13)	Results CL* Units 7.7 (6.5) - 271 (-) umho/cm 18 (-) ppm** 72 (50) ppm 321 (175) ppm 7,019 (180) ppm 423 (50) ppm 18 (13) ppm	Results CL* Units ExLow 7.7 (6.5) - Mod. Alka 271 (-) umho/cm None 18 (-) ppm** 72 (50) ppm 321 (175) ppm 7,019 (180) ppm 423 (50) ppm 18 (13) ppm	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low 7.7 (6.5) - Mod. Alkaline Mod. Alkaline 271 (-) umho/cm None 18 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533098
Customer Sample ID: 1305
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	370	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	24	(-)	ppm**	111111111111		IIIIIIII				0.3 lbs N/1000sqft
Phosphorus	1	(50)	ppm	II						3.9 lbs P2O5/1000sqft
Potassium	359	(175)	ppm	11111111111				1111111111		0 lbs K20/1000sqft
Calcium	42,745	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	413	(50)	ppm	111111111111						0 lbs Mg/1000sgft
Sulfur	33	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
Sodium	41	(-)	ppm	11111111						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533099
Customer Sample ID: 1306
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	191	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	108	(50)	ppm		111111111111		11111111111		II	0 lbs P2O5/1000sqft
Potassium	279	(175)	ppm	11111111111	111111111111			111111		0 lbs K20/1000sqft
Calcium	19,881	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	389	(50)	ppm		111111111111			11111111111		0 lbs Mg/1000sgft
Sulfur	29	(13)	ppm	11111111111			11111111111			0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533100
Customer Sample ID: 1307
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	126	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II .						1.3 lbs N/1000sqft
Phosphorus	61	(50)	ppm	11111111111			шш	III		0 lbs P2O5/1000sqft
Potassium	287	(175)	ppm	11111111111				IIIII		0 lbs K20/1000sqft
Calcium	15,017	(180)	ppm		:				II	0 lbs Ca/1000sqft
Magnesium	269	(50)	ppm	11111111111				IIIII		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111				IIIII		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II .						
Iron							ľ			
Zinc										
Manganese							I			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533101
Customer Sample ID: 1308
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly /	Alkaline					
Conductivity	321	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	47	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	278	(50)	ppm						IIII	0 lbs P2O5/1000sqft
Potassium	382	(175)	ppm			11111111111		1111111111		0 lbs K20/1000sqft
Calcium	9,685	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	468	(50)	ppm	111111111111				mmi	l	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm					111111111		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft
CI Critical laval in the maint		141						41 14 X 1		

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533102
Customer Sample ID: 1309
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow \	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alkali	ne					
Conductivity	292	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	19	(-)	ppm**		ШШ	II .				0.5 lbs N/1000sqft
Phosphorus	145	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	680	(175)	ppm	11111111111111111	шш	1111111111	mm	mmmķi	ı	0 lbs K20/1000sqft
Calcium	11,444	(180)	ppm						ı	0 lbs Ca/1000sqft
Magnesium	342	(50)	ppm	111111111111111111	ШШШ					0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm				mm	Ш		0 lbs S/1000sqft
Sodium	7	(-)	ppm	1						
Iron							ļ.			
Zinc							-			
Manganese							!			
Copper							į			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533103
Customer Sample ID: 1310
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline	!				
Conductivity	161	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	385	(50)	ppm	1111111111			111111111111		ШШ	0 lbs P2O5/1000sqft
Potassium	243	(175)	ppm	1111111111		1111111111	111111111111	וון		0 lbs K20/1000sqft
Calcium	5,493	(180)	ppm	1111111111						0 lbs Ca/1000sqft
Magnesium	424	(50)	ppm						I	0 lbs Mg/1000sgft
Sulfur	29	(13)	ppm	11111111111			111111111111	111111		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel is the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533104 Customer Sample ID: 1311 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рΗ	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	160	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	7	(50)	ppm		Ш					3.4 lbs P2O5/1000sqft
Potassium	280	(175)	ppm	11111111111	111111111111		11111111111	111111		0 lbs K20/1000sqft
Calcium	12,670	(180)	ppm	11111111111			: ,		II	0 lbs Ca/1000sqft
Magnesium	235	(50)	ppm			IIIIIIIIII		11111		0 lbs Mg/1000sgft
Sulfur	13	(13)	ppm			IIIIIIIIII	111111111111	1		0 lbs S/1000sqft
Sodium	28	(-)	ppm	IIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533105
Customer Sample ID: 1312
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	220	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	92	(50)	ppm	11111111111	111111111111			11111111111	l	0 lbs P2O5/1000sqft
otassium	350	(175)	ppm	11111111111	111111111111			1111111111		0 lbs K20/1000sqft
Calcium	6,411	(180)	ppm	11111111111		:			l	0 lbs Ca/1000sqft
/lagnesium	321	(50)	ppm		111111111111			1111111		0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm	11111111111	111111111111			1111111		0 lbs S/1000sqft
Sodium	7	(-)	ppm	I						
ron										
linc										
langanese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533106
Customer Sample ID: 1314
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	348	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	79	(50)	ppm	11111111111				1111111		0 lbs P2O5/1000sqft
Potassium	308	(175)	ppm					1111111		0 lbs K20/1000sqft
Calcium	8,839	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	1,049	(50)	ppm			IIIIIIIIII			Ш	0 lbs Mg/1000sgft
Sulfur	82	(13)	ppm	11111111111					Ш	0 lbs S/1000sqft
Sodium	31	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533107 Customer Sample ID: 1315 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	244	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**							0.7 lbs N/1000sqft
Phosphorus	102	(50)	ppm					11111111111	I	0 lbs P2O5/1000sqft
Potassium	186	(175)	ppm	11111111111)		0 lbs K20/1000sqft
Calcium	13,639	(180)	ppm	11111111111	:					0 lbs Ca/1000sqft
Magnesium	402	(50)	ppm					mmi	l	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm					111111		0 lbs S/1000sqft
Sodium	7	(-)	ppm	1						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533108
Customer Sample ID: 1316
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	295	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	80	(50)	ppm	111111111111				111111111		0 lbs P2O5/1000sqft
Potassium	355	(175)	ppm	11111111111	11111111111	11111111111		11111111111		0 lbs K20/1000sqft
Calcium	14,675	(180)	ppm	11111111111				(111111111111	II	0 lbs Ca/1000sqft
/lagnesium	754	(50)	ppm					///////////////////////////////////////	II	0 lbs Mg/1000sgft
Sulfur	33	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
Zinc Zinc										
/langanese							i			
Copper										
Boron							I			
imestone Requirement								·		0.00 lbs/1000sqft
•										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533109
Customer Sample ID: 1317
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly Al	kaline					
Conductivity	320	(-)	umho/cm	None			CL*			Fertilizer Recommended
Nitrate-N	53	(-)	ppm**		ШШ		mmmi þ	l		0 lbs N/1000sqft
Phosphorus	52	(50)	ppm				шшф			0 lbs P2O5/1000sqft
Potassium	116	(175)	ppm		ШШ		III :			1.3 lbs K20/1000sqft
Calcium	6,806	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	153	(50)	ppm				manna (II .		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm		ШШШ		шшшф	ll .		0 lbs S/1000sqft
Sodium	20	(-)	ppm	IIII						
Iron							-			
Zinc										
Manganese							į			
Copper							i			
Boron							-			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533110
Customer Sample ID: 1318
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkaline					
Conductivity	67	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**		IIIIII				0.4 lbs N/1000sqft
Phosphorus	252	(50)	ppm			шшц	mmm	Ш	0 lbs P2O5/1000sqft
Potassium	365	(175)	ppm		IIIIIIIIII	1000000			0 lbs K20/1000sqft
Calcium	11,433	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	471	(50)	ppm						0 lbs Mg/1000sgft
Sulfur	53	(13)	ppm			11111111111	HIIIIII	I	0 lbs S/1000sqft
Sodium	16	(-)	ppm	III					
Iron						¦ ¦			
Zinc						l l			
Manganese						l			
Copper						i			
Boron						<u> </u>			
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533111
Customer Sample ID: 1319
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.8	(6.5)	-	Mod. Alkaline
Conductivity	519	(-)	umho/cm	Slight CL. Fertilizer Recommended
Nitrate-N	26	(-)	ppm**	
Phosphorus	492	(50)	ppm	
Potassium	1596	(175)	ppm	
Calcium	17,229	(180)	ppm	
Magnesium	835	(50)	ppm	
Sulfur	71	(13)	ppm	
Sodium	98	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				diagraturate N. andicum and annotativity in a supermonded **-pum mar/les

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533112
Customer Sample ID: 1320
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.6	(6.5)	-	Mod. Alkaline
Conductivity	288	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	17	(-)	ppm**	
Phosphorus	273	(50)	ppm	
Potassium	635	(175)	ppm	
Calcium	13,579	(180)	ppm	
Magnesium	566	(50)	ppm	
Sulfur	31	(13)	ppm	
Sodium	35	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding without N. andium and appeluativity in a common and at **more market

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533113
Customer Sample ID: 1321
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.5	(6.5)	-	Slightly	Alkaline)				
Conductivity	76	(-)	umho/cm	None			. CI	.*		Fertilizer Recommended
litrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
hosphorus	43	(50)	ppm	ШШШ						0.5 lbs P2O5/1000sqft
Potassium	113	(175)	ppm	1111111111						1.4 lbs K20/1000sqft
Calcium	2,985	(180)	ppm	1111111111				III		0 lbs Ca/1000sqft
Magnesium	199	(50)	ppm	1111111111				Ш		0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	1111111111	111111111111		1111111			0.25 lbs S/1000sqft
Sodium	6	(-)	ppm	ı						
ron										
linc										
/langanese										
Copper							;			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533114
Customer Sample ID: 1322

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.6	(6.5)	-	Mod. Alkaline
Conductivity	369	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	29	(-)	ppm**	
Phosphorus	402	(50)	ppm	
Potassium	615	(175)	ppm	
Calcium	11,541	(180)	ppm	
Magnesium	723	(50)	ppm	
Sulfur	45	(13)	ppm	
Sodium	32	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533115
Customer Sample ID: 1323
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рΗ	7.8	(6.5)	-	Mod. Alk	kaline					
Conductivity	203	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	76	(50)	ppm		ШШШ			1111111		0 lbs P2O5/1000sqft
Potassium	288	(175)	ppm	11111111111	111111111111			ווווון		0 lbs K20/1000sqft
Calcium	23,136	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	343	(50)	ppm		111111111111					0 lbs Mg/1000sgft
Sulfur	41	(13)	ppm		111111111111			1111111111		0 lbs S/1000sqft
Sodium	26	(-)	ppm	ШШ						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533116
Customer Sample ID: 1324
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	6.4	(6.5)	-	Slightly Acid					
Conductivity	558	(-)	umho/cm	Slight		CL	*		Fertilizer Recommended
Nitrate-N	30	(-)	ppm**						0 lbs N/1000sqft
Phosphorus	110	(50)	ppm			шшф		II	0 lbs P2O5/1000sqft
Potassium	287	(175)	ppm			mmm	IIIII		0 lbs K20/1000sqft
Calcium	887	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	178	(50)	ppm			mmi	IIII		0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm						0 lbs S/1000sqft
Sodium	4	(-)	ppm						
Iron						- ;			
Zinc						-			
Manganese						į			
Copper						į			
Boron						i			
Limestone Requirement									10.00 lbs/1000sqft
·	-						•		·

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533117
Customer Sample ID: 1325
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.5	(6.5)	-	Slightly Ac	id					
Conductivity	1,133	(-)	umho/cm	Moderate			CI			Fertilizer Recommended
Nitrate-N	157	(-)	ppm**	1111111111111111						0 lbs N/1000sqft
Phosphorus	249	(50)	ppm		IIIIIIII			11111111111	Ш	0 lbs P2O5/1000sqft
Potassium	190	(175)	ppm		ШШ			ı		0 lbs K20/1000sqft
Calcium	5,188	(180)	ppm		:					0 lbs Ca/1000sqft
Magnesium	444	(50)	ppm		ШШ			11111111111	l	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm		ШШ					0 lbs S/1000sqft
Sodium	7	(-)	ppm	ı						
Iron										
Zinc										
Manganese							į			
Copper							i			
Boron							, ,			
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel in the maint w										t t to

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533118 Customer Sample ID: 1327 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	caline					
Conductivity	209	(-)	umho/cm	None			CI			Fertilizer Recommended
litrate-N	9	(-)	ppm**	IIIIIIII						1 lbs N/1000sqft
hosphorus	9	(50)	ppm		ШШ			l		3.3 lbs P2O5/1000sqft
otassium	196	(175)	ppm)		0 lbs K20/1000sqft
Calcium	30,441	(180)	ppm			:			II	0 lbs Ca/1000sqft
Magnesium (1997)	205	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm					11111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron								l		
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533119
Customer Sample ID: 1328
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Nitrate-N 8 (-) ppm** IIIIII 1.1 lbs N/1000sqft	Crop Grown: G	ARDEN									
Conductivity 227 (-)	Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Nitrate-N	рН	7.9	(6.5)	-	Mod. Alka	line					
Phosphorus 52 (50) ppm	Conductivity	227	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Potassium 325 (175) ppm	Nitrate-N	8	(-)	ppm**	1111111						1.1 lbs N/1000sqft
Calcium 14,910 (180) ppm	Phosphorus	52	(50)	ppm	11111111111111			mmi	l		0 lbs P2O5/1000sqft
Magnesium 332 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	325	(175)	ppm		HIIIIII		mmm			0 lbs K20/1000sqft
Sulfur 18 (13) ppm	Calcium	14,910	(180)	ppm						II	0 lbs Ca/1000sqft
Sodium 9 (-) ppm I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Magnesium	332	(50)	ppm				mmi			0 lbs Mg/1000sgft
Iron Zinc Manganese Copper Boron	Sulfur	18	(13)	ppm				шшф	III		0 lbs S/1000sqft
Zinc Manganese Copper Boron	Sodium	9	(-)	ppm	1						
Manganese Copper Boron	Iron							¦			
Copper Boron	Zinc							· ·			
Boron Control	Manganese							į			
								i			
Limestone Requirement 0.00 lbs/1000sqft	Boron							i i			
	Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533121
Customer Sample ID: 1330
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline	!				
Conductivity	211	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	323	(50)	ppm	ШШШ			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	humi	IIIII	0 lbs P2O5/1000sqft
Potassium	250	(175)	ppm	1111111111	11111111111		•	וווון		0 lbs K20/1000sqft
Calcium	9,319	(180)	ppm					(11111111111		0 lbs Ca/1000sqft
Magnesium	811	(50)	ppm	1111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		II .	0 lbs Mg/1000sgft
Sulfur	47	(13)	ppm	1111111111	11111111111	1111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		l	0 lbs S/1000sqft
Sodium	25	(-)	ppm	IIII						
Iron										
Zinc								!		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI Critical lavel in the maint w										1 1 1 1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533122
Customer Sample ID: 1331
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.3	(6.5)	-	Slightly Al	lkaline					
1,280	(-)	umho/cm	Moderate			CL			Fertilizer Recommended
19	(-)	ppm**		ШШЩ	Ш				0.5 lbs N/1000sqft
302	(50)	ppm						IIIIII	0 lbs P2O5/1000sqft
261	(175)	ppm		mmi		mmm	IIIII		0 lbs K20/1000sqft
16,791	(180)	ppm						II	0 lbs Ca/1000sqft
285	(50)	ppm					IIIIII		0 lbs Mg/1000sgft
947	(13)	ppm		ШШШ				111111111111	0 lbs S/1000sqft
14	(-)	ppm	II						
						ļ			
						i			
									0.00 lbs/1000sqft
	7.3 1,280 19 302 261 16,791 285 947	Results CL* 7.3 (6.5) 1,280 (-) 19 (-) 302 (50) 261 (175) 16,791 (180) 285 (50) 947 (13)	Results CL* Units 7.3 (6.5) - 1,280 (-) umho/cm 19 (-) ppm** 302 (50) ppm 261 (175) ppm 16,791 (180) ppm 285 (50) ppm 947 (13) ppm	Results CL* Units ExLow 7.3 (6.5) - Slightly A 1,280 (-) umho/cm Moderate 19 (-) ppm** 302 (50) ppm 261 (175) ppm 16,791 (180) ppm 285 (50) ppm 947 (13) ppm	Results CL* Units ExLow VLow 7.3 (6.5) - Slightly Alkaline 1,280 (-) umho/cm Moderate 19 (-) ppm**	Results CL* Units ExLow VLow Low	Results CL* Units	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533123
Customer Sample ID: 1332
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	118	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	166	(50)	ppm				11111111111		II	0 lbs P2O5/1000sqft
Potassium	340	(175)	ppm		IIIIIIIIII		11111111111	11111111111		0 lbs K20/1000sqft
Calcium	13,848	(180)	ppm	1111111111111					l l	0 lbs Ca/1000sqft
Magnesium	241	(50)	ppm	1111111111111				Ш		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm				11111111111	11111		0 lbs S/1000sqft
Sodium	9	(-)	ppm	1						
Iron										
Zinc										
Manganese										
Copper										
Boron							,			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533124
Customer Sample ID: 1333
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	301	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**							0.5 lbs N/1000sqft
Phosphorus	369	(50)	ppm					hoooni	Ш	0 lbs P2O5/1000sqft
Potassium	587	(175)	ppm	11111111111		1111111111		ļuunuķi	ı	0 lbs K20/1000sqft
Calcium	11,391	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	584	(50)	ppm					mmi	I	0 lbs Mg/1000sgft
Sulfur	45	(13)	ppm							0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
Iron										
Zinc								!		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w	1 2 1 1 1 1				N.I.	r.				1 1 44 (1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533125
Customer Sample ID: 1335
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
pH	7.7	(6.5)	-	Mod. Alka	line					
Conductivity	255	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	81	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	247	(175)	ppm		111111111			Ш		0 lbs K20/1000sqft
Calcium	6,480	(180)	ppm	11111111111111	111111111			mmi	l	0 lbs Ca/1000sqft
Magnesium	274	(50)	ppm		111111111					0 lbs Mg/1000sgft
Sulfur	47	(13)	ppm	111111111111111	111111111		шшш	ı	ı	0 lbs S/1000sqft
Sodium	2	(-)	ppm							
Iron							i			
Zinc							ļ			
Manganese							i			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533126
Customer Sample ID: 1336
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Nitrate-N 32 (-) ppm**	Crop Grown: G	ARDEN									
Conductivity		Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Nitrate-N 32 (-) ppm**	рН	7.5	(6.5)	-	Slightly Al	kaline					
Phosphorus 72 (50) ppm	Conductivity	211	(-)	umho/cm					.*		Fertilizer Recommended
Potassium 364 (175) ppm	Nitrate-N	32	(-)	ppm**				III			0 lbs N/1000sqft
Calcium 25,098 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Phosphorus	72	(50)	ppm	11111111111111111				IIIIII		0 lbs P2O5/1000sqft
Magnesium 301 (50) ppm IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	364	(175)	ppm		IIIIIIII	IIIIIIIIII	шшш			0 lbs K20/1000sqft
Sulfur 45 (13) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Calcium	25,098	(180)	ppm						II	0 lbs Ca/1000sqft
Sodium 19 (-) ppm III III IIII IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Magnesium	301	(50)	ppm							0 lbs Mg/1000sgft
Iron Zinc Manganese Copper Boron	Sulfur	45	(13)	ppm							0 lbs S/1000sqft
Zinc Manganese Copper Boron	Sodium	19	(-)	ppm	Ш						
Manganese Copper Boron	Iron										
Copper Boron	Zinc										
Boron	Manganese							ļ			
	Copper							i			
Limestone Requirement 0.00 lbs/1000sqft	Boron							ı			
	Limestone Requirement										0.00 lbs/1000sqft
1											

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533127
Customer Sample ID: 1337
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

D = = 4 =	~ 1.4								
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. Alk	aline					
991	(-)	umho/cm	Moderate	•		CL	*		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
15	(50)	ppm	111111111111		Ш				2.8 lbs P2O5/1000sqft
218	(175)	ppm	11111111111			mmn	II .		0 lbs K20/1000sqft
25,435	(180)	ppm	111111111111		IIIIIIIIII		mmi	II	0 lbs Ca/1000sqft
655	(50)	ppm	111111111111				HHHHH	II .	0 lbs Mg/1000sgft
375	(13)	ppm	111111111111				ı		0 lbs S/1000sqft
55	(-)	ppm	11111111111						
						ļ	İ		
						1			
						į			
						i			
						I			
									0.00 lbs/1000sqft
	991 1 15 218 25,435 655 375	991 (-) 1 (-) 15 (50) 218 (175) 25,435 (180) 655 (50) 375 (13)	991 (-) umho/cm 1 (-) ppm** 15 (50) ppm 218 (175) ppm 25,435 (180) ppm 655 (50) ppm 375 (13) ppm	991 (-) umho/cm Moderate 1 (-) ppm** 15 (50) ppm 218 (175) ppm 25,435 (180) ppm 655 (50) ppm 375 (13) ppm	991 (-) umho/cm Moderate 1 (-) ppm**	991 (-) umho/cm Moderate 1 (-) ppm**	991 (-) umho/cm Moderate c. 1 (-) ppm**	991 (-) umho/cm Moderate CL- 1 (-) ppm**	991 (-) umho/cm Moderate cl. 1 (-) ppm** 15 (50) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533128
Customer Sample ID: 1338
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	257	(-)	umho/cm	None			CI	_*		Fertilizer Recommended
Nitrate-N	25	(-)	ppm**	11111111111						0.2 lbs N/1000sqft
Phosphorus	352	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	358	(175)	ppm	11111111111				וווווווווווון		0 lbs K20/1000sqft
Calcium	17,087	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	415	(50)	ppm	11111111111				///////////	l	0 lbs Mg/1000sgft
Sulfur	71	(13)	ppm	11111111111				111111111111	Ш	0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							l			
Limestone Requirement										0.00 lbs/1000sqft
*CL -Critical layed is the point w					N.I.	r.	1 1	v		1 1 1 1 1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533129
Customer Sample ID: 1339
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		OL *	11							
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	218	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	16	(-)	ppm**	11111111111	:					0.7 lbs N/1000sqft
Phosphorus	107	(50)	ppm						II	0 lbs P2O5/1000sqft
Potassium	255	(175)	ppm							0 lbs K20/1000sqft
Calcium	20,866	(180)	ppm		:				II	0 lbs Ca/1000sqft
/lagnesium	386	(50)	ppm					11111111111		0 lbs Mg/1000sgft
Sulfur	40	(13)	ppm	11111111111		IIIIIIIIII		111111111		0 lbs S/1000sqft
Sodium	21	(-)	ppm	Ш						
ron										
Zinc Zinc										
Manganese							i			
Copper							l			
Boron							ļ			
imestone Requirement								•		0.00 lbs/1000sqft
-										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533130
Customer Sample ID: 1370
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

er Recommended
lbs N/1000sqft
lbs P2O5/1000sqft
lbs K20/1000sqft
lbs Ca/1000sqft
lbs Mg/1000sgft
lbs S/1000sqft
lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533131
Customer Sample ID: 1371

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline)				
Conductivity	227	(-)	umho/cm	None			С	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIII						1.2 lbs N/1000sqft
Phosphorus	497	(50)	ppm						IIIIII	0 lbs P2O5/1000sqft
Potassium	289	(175)	ppm	1111111111	11111111111		•	111111		0 lbs K20/1000sqft
Calcium	8,117	(180)	ppm					(111111111111		0 lbs Ca/1000sqft
Magnesium	527	(50)	ppm	1111111111					II .	0 lbs Mg/1000sgft
Sulfur	58	(13)	ppm	1111111111					II .	0 lbs S/1000sqft
Sodium	25	(-)	ppm	ШШ						
Iron										
Zinc								!		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI Critical lavel in the maint w										1 1 1 1

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533132
Customer Sample ID: 1372
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.5	(6.5)	-	Slightly	Alkaline	!				
Conductivity	248	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	186	(50)	ppm	1111111111				1111111111111	II	0 lbs P2O5/1000sqft
Potassium	153	(175)	ppm		ļ		111111111			0.5 lbs K20/1000sqft
Calcium	8,728	(180)	ppm					(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
Magnesium	560	(50)	ppm	1111111111					II .	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	1111111111				111111111		0 lbs S/1000sqft
Sodium	31	(-)	ppm	1111111						
ron										
Zinc										
Manganese										
Copper							i			
Boron							<u> </u>			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533133
Customer Sample ID: 1373
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	125	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**		111111111111	I				0.6 lbs N/1000sqft
Phosphorus	535	(50)	ppm		111111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ШШ	0 lbs P2O5/1000sqft
Potassium	316	(175)	ppm	11111111111	111111111111		•)		0 lbs K20/1000sqft
Calcium	10,027	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	423	(50)	ppm	11111111111	111111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		l l	0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
Sodium	9	(-)	ppm	ı						
ron										
Zinc										
Vlanganese										
Copper								i		
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533134
Customer Sample ID: 1374
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	175	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	121	(50)	ppm	111111111111			11111111111	111111111111	II	0 lbs P2O5/1000sqft
Potassium	168	(175)	ppm	11111111111			11111111111			0.1 lbs K20/1000sqft
Calcium	9,043	(180)	ppm	11111111111			11111111111	(111111111111	II	0 lbs Ca/1000sqft
Magnesium	355	(50)	ppm					111111111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm	11111111111			11111111111	11111		0 lbs S/1000sqft
Sodium	6	(-)	ppm	1						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533135 Customer Sample ID: 1375 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Mod. All	kaline					
Conductivity	195	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
hosphorus	44	(50)	ppm				111111111			0.5 lbs P2O5/1000sqft
otassium	111	(175)	ppm	11111111111	111111111111		1			1.4 lbs K20/1000sqft
Calcium	16,025	(180)	ppm			!	:	. :		0 lbs Ca/1000sqft
Magnesium (1997)	553	(50)	ppm						II	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm					111111		0 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111						
ron										
linc										
/langanese										
Copper										
Boron							l			
imestone Requirement					•					0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533136
Customer Sample ID: 1376

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.4	(6.5)	-	Slightly Alkaline
Conductivity	488	(-)	umho/cm	Slight CL. Fertilizer Recommended
Nitrate-N	40	(-)	ppm**	
Phosphorus	172	(50)	ppm	
Potassium	441	(175)	ppm	
Calcium	6,239	(180)	ppm	
Magnesium	602	(50)	ppm	
Sulfur	78	(13)	ppm	
Sodium	29	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533137
Customer Sample ID: 1377
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Mod. Alkaline					
Conductivity	278	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	111111111111111111111111111111111111111					0.8 lbs N/1000sqft
Phosphorus	92	(50)	ppm			11111111111	HHHHH		0 lbs P2O5/1000sqft
Potassium	533	(175)	ppm			1000000	mmmķ		0 lbs K20/1000sqft
Calcium	12,208	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	497	(50)	ppm			111111111111	mmmi		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm			11111111111	ı		0 lbs S/1000sqft
Sodium	7	(-)	ppm	I					
Iron						¦ ¦			
Zinc						l l			
Manganese						l			
Copper						i			
Boron						: :			
Limestone Requirement									0.00 lbs/1000sqft
	-	•	•			•			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533138
Customer Sample ID: 1378
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.6	(6.5)	-	Mod. Alka	aline					
196	(-)	umho/cm	None			CL	*		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
119	(50)	ppm	1111111111111			:::::::¢	mmi	I	0 lbs P2O5/1000sqft
178	(175)	ppm	111111111111	1111111111		111111111111111111111111111111111111111	ı		0 lbs K20/1000sqft
12,409	(180)	ppm		:					0 lbs Ca/1000sqft
524	(50)	ppm				111111111111111111111111111111111111111	mmmi	I	0 lbs Mg/1000sgft
24	(13)	ppm					IIIII		0 lbs S/1000sqft
21	(-)	ppm	Ш						
						ı			
						ļ			
						i			
						ľ			
									0.00 lbs/1000sqft
	7.6 196 1 119 178 12,409 524 24	Results CL* 7.6 (6.5) 196 (-) 119 (50) 178 (175) 12,409 (180) 524 (50) 24 (13)	Results CL* Units 7.6 (6.5) - 196 (-) umho/cm 1 (-) ppm** 119 (50) ppm 178 (175) ppm 12,409 (180) ppm 524 (50) ppm 24 (13) ppm	Results CL* Units ExLow 7.6 (6.5) - Mod. Alka 196 (-) umho/cm None 1 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.6 (6.5) - Mod. Alkaline 196 (-) umho/cm None 1 (-) ppm** 119 (50) ppm 178 (175) ppm 12,409 (180) ppm 524 (50) ppm 11111111 24 (13) ppm	Results CL* Units ExLow VLow Low 7.6 (6.5) - Mod. Alkaline - 196 (-) umho/cm None - 1 (-) ppm*** 119 (50) ppm 178 (175) ppm	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533139
Customer Sample ID: 1379
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		O								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	271	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	82	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	272	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	10,447	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	459	(50)	ppm		111111111111		111111111111111111111111111111111111111	IIIIIIIII	l	0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111	111111111111		шшш			0 lbs S/1000sqft
Sodium	27	(-)	ppm	IIIIII						
ron							ļ	İ		
Zinc										
Manganese							i			
Copper							i			
Boron							¦			
imestone Requirement									·	0.00 lbs/1000sqft
CL -Critical layed is the point w								\ ·		1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533140
Customer Sample ID: 1380

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.6	(6.5)	-	Mod. Alkaline
Conductivity	73	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	38	(-)	ppm**	
Phosphorus	439	(50)	ppm	
Potassium	435	(175)	ppm	
Calcium	8,774	(180)	ppm	
Magnesium	522	(50)	ppm	
Sulfur	49	(13)	ppm	
Sodium	44	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533141
Customer Sample ID: 1381
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
pH	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	166	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	111111111111	Ш					0.8 lbs N/1000sqft
Phosphorus	29	(50)	ppm	111111111111	11111111111		l			1.6 lbs P2O5/1000sqft
Potassium	588	(175)	ppm	111111111111	11111111111			11111111111	II	0 lbs K20/1000sqft
Calcium	25,544	(180)	ppm	111111111111					II	0 lbs Ca/1000sqft
Magnesium	325	(50)	ppm		11111111111			1111111		0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm	111111111111	11111111111			1111111		0 lbs S/1000sqft
Sodium	62	(-)	ppm		II					
ron										
Zinc										
Manganese							į			
Copper							i			
Boron							, ,			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533142
Customer Sample ID: 1383
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	143	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
litrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	34	(50)	ppm	1111111111111			IIIII	l		1.2 lbs P2O5/1000sqft
otassium	227	(175)	ppm		1111111111			III		0 lbs K20/1000sqft
Calcium	23,997	(180)	ppm	1111111111111	:		:		II	0 lbs Ca/1000sqft
Magnesium	259	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm					111111		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533143
Customer Sample ID: 1384
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	Results	CL*	Units	F1					Var	F
nalysis		_		ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.6	(6.5)	-	Mod. All	kaline					
Conductivity	370	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	11	(50)	ppm							3 lbs P2O5/1000sqft
Potassium	550	(175)	ppm							0 lbs K20/1000sqft
Calcium	12,444	(180)	ppm				: ,		II	0 lbs Ca/1000sqft
/lagnesium	375	(50)	ppm			IIIIIIIIII	111111111111			0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	11111111111		IIIIIIIIII	11111111111	III		0 lbs S/1000sqft
Sodium	5	(-)	ppm	ı						
ron										
Zinc										
Manganese										
Copper										
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical laval is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533144
Customer Sample ID: 1385
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkali	ine					
Conductivity	1,080	(-)	umho/cm	Moderate			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	273	(50)	ppm				:::::::(mmi	Ш	0 lbs P2O5/1000sqft
Potassium	1399	(175)	ppm		ШШ			mmi	II	0 lbs K20/1000sqft
Calcium	15,140	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	541	(50)	ppm	11111111111111111				mmmi	I	0 lbs Mg/1000sgft
Sulfur	262	(13)	ppm		ШШШ			mmi	1111111111	0 lbs S/1000sqft
Sodium	234	(-)	ppm		ШШ	IIII				
Iron							ı			
Zinc							I			
Manganese							i			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533145
Customer Sample ID: 1386
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. Alk	aline					
330	(-)	umho/cm	None			CL	*		Fertilizer Recommended
3	(-)	ppm**	II						1.3 lbs N/1000sqft
189	(50)	ppm	111111111111				mmi	II	0 lbs P2O5/1000sqft
717	(175)	ppm	11111111111	11111111111			mmmi	ı	0 lbs K20/1000sqft
9,385	(180)	ppm							0 lbs Ca/1000sqft
700	(50)	ppm					mmmi	ı	0 lbs Mg/1000sgft
61	(13)	ppm					mmi	ı	0 lbs S/1000sqft
17	(-)	ppm	Ш						
						ı			
						ı			
						i			
						ļ			
									0.00 lbs/1000sqft
	7.9 330 3 189 717 9,385 700 61	Results CL* 7.9 (6.5) 330 (-) 3 (-) 189 (50) 717 (175) 9,385 (180) 700 (50) 61 (13)	Results CL* Units 7.9 (6.5) - 330 (-) umho/cm 3 (-) ppm** 189 (50) ppm 717 (175) ppm 9,385 (180) ppm 700 (50) ppm 61 (13) ppm	Results CL* Units ExLow 7.9 (6.5) - Mod. Alk 330 (-) umho/cm None 3 (-) ppm*** II 189 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.9 (6.5) - Mod. Alkaline 330 (-) umho/cm None 3 (-) ppm** II 189 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low 7.9 (6.5) - Mod. Alkaline - 330 (-) umho/cm None - 3 (-) ppm*** II - 189 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533146
Customer Sample ID: 1387

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKUEN								
Analysis	Results	CL*	Units	ExLow VL	w Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alkaline					
Conductivity	262	(-)	umho/cm	None	_		CL*		Fertilizer Recommended
Nitrate-N	16	(-)	ppm**		Ш				0.7 lbs N/1000sqft
Phosphorus	121	(50)	ppm			1111111111111	ķ iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	II	0 lbs P2O5/1000sqft
Potassium	821	(175)	ppm	111111111111111111111111111111111111111	Щини	фини	ķ mminiķ	II	0 lbs K20/1000sqft
Calcium	9,444	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	517	(50)	ppm		ШШШ	111111111111	A mmini	II	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm			111111111111	ķ IIIII		0 lbs S/1000sqft
Sodium	23	(-)	ppm	IIII					
Iron							:		
Zinc									
Manganese									
Copper									
Boron							¦		
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533147
Customer Sample ID: 1388
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	163	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
hosphorus	6	(50)	ppm		III					3.5 lbs P2O5/1000sqft
otassium	193	(175)	ppm)		0 lbs K20/1000sqft
Calcium	35,803	(180)	ppm	11111111111		!				0 lbs Ca/1000sqft
Magnesium	471	(50)	ppm						l l	0 lbs Mg/1000sgft
Sulfur	45	(13)	ppm	11111111111					l	0 lbs S/1000sqft
odium	25	(-)	ppm	IIII						
ron										
linc								·		
/langanese							i			
Copper							ľ			
Boron										
imestone Requirement								·		0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533148
Customer Sample ID: 1389
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.3	(6.5)	-	Slightly	Alkaline					
Conductivity	288	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**	11111111111		Ш				0.4 lbs N/1000sqft
Phosphorus	63	(50)	ppm	11111111111				111		0 lbs P2O5/1000sqft
Potassium	208	(175)	ppm	11111111111)II		0 lbs K20/1000sqft
Calcium	7,187	(180)	ppm	11111111111		IIIIIIIIII		(((((((((((((((((((((((((((((((((((((((II	0 lbs Ca/1000sqft
Magnesium	330	(50)	ppm	11111111111				1111111		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533149
Customer Sample ID: 1390
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		CI *	Unito			_				_
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
pH	7.6	(6.5)	-	Slightly A	Alkaline					
Conductivity	307	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	25	(-)	ppm**			:				0.2 lbs N/1000sqft
Phosphorus	39	(50)	ppm							0.8 lbs P2O5/1000sqft
Potassium	289	(175)	ppm							0 lbs K20/1000sqft
Calcium	6,118	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	244	(50)	ppm		11111111111			Ш		0 lbs Mg/1000sgft
Sulfur	15	(13)	ppm					II		0 lbs S/1000sqft
Sodium	1	(-)	ppm							
ron										
Zinc										
Manganese							i			
Copper							ď			
Boron							!			
Limestone Requirement						·				0.00 lbs/1000sqft
•										·
CI Critical lavel in the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533151
Customer Sample ID: 1391
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

High VHigh	Fertilizer Recommended 0.8 lbs N/1000sqft 0 lbs P2O5/1000sqft 0 lbs K20/1000sqft 0 lbs Ca/1000sqft
l I	0.8 lbs N/1000sqft 0 lbs P2O5/1000sqft 0 lbs K20/1000sqft 0 lbs Ca/1000sqft
l I	0.8 lbs N/1000sqft 0 lbs P2O5/1000sqft 0 lbs K20/1000sqft 0 lbs Ca/1000sqft
l I	 0 lbs P2O5/1000sqft 0 lbs K20/1000sqft 0 lbs Ca/1000sqft
l I	0 lbs K20/1000sqft 0 lbs Ca/1000sqft
I	0 lbs Ca/1000sqft
II	
	0 lbs Mg/1000sgft
•	0.25 lbs S/1000sqft
	0.00 lbs/1000sqft
	with) is recom

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533152 Customer Sample ID: 1392 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	136	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	36	(50)	ppm	1111111111111			11111			1.1 lbs P2O5/1000sqft
Potassium	199	(175)	ppm	1111111111111	1111111111			l		0 lbs K20/1000sqft
Calcium	22,451	(180)	ppm	1111111111111	1111111111		11111111111		II	0 lbs Ca/1000sqft
Magnesium	374	(50)	ppm		1111111111					0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm	111111111111	1111111111		11111111111	11111		0 lbs S/1000sqft
Sodium	6	(-)	ppm	1						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533153 Customer Sample ID: 1393 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alka	aline					
Conductivity	155	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
litrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	81	(50)	ppm							0 lbs P2O5/1000sqft
otassium	572	(175)	ppm					mmmi	II .	0 lbs K20/1000sqft
Calcium	11,533	(180)	ppm	111111111111				mmi	II	0 lbs Ca/1000sqft
/lagnesium	344	(50)	ppm					111111111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm	111111111111			111111			0.25 lbs S/1000sqft
Sodium	3	(-)	ppm							
ron										
linc										
/langanese							i			
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533154
Customer Sample ID: 1394
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	227	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	11111111111	l					0.9 lbs N/1000sqft
Phosphorus	56	(50)	ppm	11111111111			шин	I		0 lbs P2O5/1000sqft
Potassium	376	(175)	ppm	11111111111			шин	111111111		0 lbs K20/1000sqft
Calcium	9,451	(180)	ppm	11111111111				ШШЩ	I	0 lbs Ca/1000sqft
Magnesium	358	(50)	ppm	11111111111				11111111		0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm	11111111111				ı		0 lbs S/1000sqft
Sodium	2	(-)	ppm							
ron										
Zinc										
V anganese							į			
Copper							i			
Boron										
Limestone Requirement				•				·		0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533155
Customer Sample ID: 1395
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
эН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	326	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
Phosphorus	209	(50)	ppm				11111111111	11111111111	IIII	0 lbs P2O5/1000sqft
Potassium	383	(175)	ppm				11111111111	,,,,,,,,,,,		0 lbs K20/1000sqft
Calcium	11,588	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	540	(50)	ppm					///////////	II	0 lbs Mg/1000sgft
Sulfur	49	(13)	ppm	11111111111			11111111111	mmi	l	0 lbs S/1000sqft
Sodium	31	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron							,			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533156
Customer Sample ID: 1396
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. Alkal	line					
212	(-)	umho/cm	None			CL	*		Fertilizer Recommended
22	(-)	ppm**			Ш				0.4 lbs N/1000sqft
91	(50)	ppm			IIIIIIIII	шшщ	IIIIIIIII	I	0 lbs P2O5/1000sqft
302	(175)	ppm		ШШ	ШШШ	mmm	1111111		0 lbs K20/1000sqft
17,822	(180)	ppm						II	0 lbs Ca/1000sqft
264	(50)	ppm			IIIIIIIIII		111111		0 lbs Mg/1000sgft
22	(13)	ppm			IIIIIIIIII	шшш	11111		0 lbs S/1000sqft
8	(-)	ppm	1						
						İ			
						i			
									0.00 lbs/1000sqft
	7.8 212 22 91 302 17,822 264 22	Results CL* 7.8 (6.5) 212 (-) 22 (-) 91 (50) 302 (175) 17,822 (180) 264 (50) 22 (13)	Results CL* Units 7.8 (6.5) - 212 (-) umho/cm 22 (-) ppm** 91 (50) ppm 302 (175) ppm 17,822 (180) ppm 264 (50) ppm 22 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. Alkal 212 (-) umho/cm None 22 (-) ppm** 91 (50) ppm 302 (175) ppm 17,822 (180) ppm 264 (50) ppm 22 (13) ppm	Results CL* Units ExLow ∨Low 7.8 (6.5) - Mod. Alkaline 212 (-) umho/cm None 22 (-) ppm***	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline Mod. Alkaline 212 (-) umho/cm None 22 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod 7.8 (6.5) - Mod. Alkaline C. 212 (-) umho/cm None C. 22 (-) ppm**	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533157
Customer Sample ID: 1397
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
θH	7.5	(6.5)	-	Slightly A	lkaline					
Conductivity	461	(-)	umho/cm	Slight			. CI			Fertilizer Recommended
Nitrate-N	58	(-)	ppm**				:			0 lbs N/1000sqft
Phosphorus	157	(50)	ppm				шшш	uuuuui j	Ш	0 lbs P2O5/1000sqft
Potassium	311	(175)	ppm							0 lbs K20/1000sqft
Calcium	6,242	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	334	(50)	ppm			IIIIIIIIIII	111111111111			0 lbs Mg/1000sgft
Sulfur	49	(13)	ppm		ШШШ	ШШШ	11111111111	HIIIIIII	l	0 lbs S/1000sqft
Sodium	9	(-)	ppm	1						
ron										
Zinc										
Manganese							į			
Copper							i			
Boron										
imestone Requirement								·		0.00 lbs/1000sqft
CL -Critical layed is the point w		:e: 1		U Ituata	NI		al a a a ala			1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533158
Customer Sample ID: 1398
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.9	(6.5)	-	Mod. Alkaline
Conductivity	316	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	23	(-)	ppm**	
Phosphorus	184	(50)	ppm	
Potassium	611	(175)	ppm	
Calcium	15,138	(180)	ppm	
Magnesium	341	(50)	ppm	
Sulfur	25	(13)	ppm	
Sodium	5	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrate N. codium and conductivity) is recommended **prop. pos//co

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533159
Customer Sample ID: 1399
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alka	aline					
Conductivity	182	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
litrate-N	18	(-)	ppm**		1111111111	Ш				0.5 lbs N/1000sqft
hosphorus	37	(50)	ppm				IIIII			1 lbs P2O5/1000sqft
otassium	316	(175)	ppm		1111111111)		0 lbs K20/1000sqft
Calcium	11,446	(180)	ppm			•	:		II	0 lbs Ca/1000sqft
/lagnesium	222	(50)	ppm	1111111111111				11111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm							0.25 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
ron										
inc										
langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533160
Customer Sample ID: 1415
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly A	Alkaline					
Conductivity	578	(-)	umho/cm	Slight			CI			Fertilizer Recommended
Nitrate-N	116	(-)	ppm**		11111111111				Ш	0 lbs N/1000sqft
Phosphorus	111	(50)	ppm					111111111111111111111111111111111111111	II	0 lbs P2O5/1000sqft
Potassium	201	(175)	ppm	111111111111	11111111111			11		0 lbs K20/1000sqft
Calcium	13,686	(180)	ppm			IIIIIIIIII		(111111111111	II	0 lbs Ca/1000sqft
Magnesium	188	(50)	ppm		11111111111			11111		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	111111111111	11111111111			111111		0 lbs S/1000sqft
Sodium	43	(-)	ppm	11111111						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533161
Customer Sample ID: 1417
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.3	(6.5)	-	Slightly	Alkaline					
175	(-)	umho/cm	None			CL	*		Fertilizer Recommended
1	(-)	ppm**							1.4 lbs N/1000sqft
64	(50)	ppm					Ш		0 lbs P2O5/1000sqft
154	(175)	ppm	11111111111		11111111111	111111111			0.4 lbs K20/1000sqft
3,603	(180)	ppm	:		•				0 lbs Ca/1000sqft
511	(50)	ppm	1111111111				///////////////////////////////////////	II	0 lbs Mg/1000sgft
8	(13)	ppm	1111111111						0.25 lbs S/1000sqft
10	(-)	ppm	II						
						i			
									0.00 lbs/1000sqft
	7.3 175 1 64 154 3,603 511 8 10	7.3 (6.5) 175 (-) 1 (-) 64 (50) 154 (175) 3,603 (180) 511 (50) 8 (13) 10 (-)	7.3 (6.5) - 175 (-) umho/cm 1 (-) ppm** 64 (50) ppm 154 (175) ppm 3,603 (180) ppm 511 (50) ppm 8 (13) ppm 10 (-) ppm	7.3 (6.5) - Slightly 175 (-) umho/cm 1 (-) ppm** 64 (50) ppm 154 (175) ppm 3,603 (180) ppm 511 (50) ppm 8 (13) ppm 10 (-) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	7.3 (6.5) - Slightly Alkaline 175 (-) umho/cm 1 (-) ppm** 64 (50) ppm 154 (175) ppm 11111111111111111111111111111111111	7.3 (6.5) - Slightly Alkaline 175 (-) umho/cm 1 (-) ppm** 64 (50) ppm 154 (175) ppm 1511 (50) ppm 15	7.3 (6.5) - Slightly Alkaline 175 (-) umho/cm 1 (-) ppm** 64 (50) ppm 154 (175) ppm 1551 (50) ppm 151 (50)	7.3 (6.5) - Slightly Alkaline 175 (-) umho/cm 1 (-) ppm** 64 (50) ppm 154 (175) ppm 1511 (50) ppm 1	7.3 (6.5) - Slightly Alkaline 175 (-) umho/cm None ct 1 (-) ppm** 64 (50) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533162
Customer Sample ID: 1418
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Nitrate-N 21	Crop Grown: G	ARDEN								
Conductivity 234 (-) umho/cm None CL Fertilizer Recommended	Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
Nitrate-N 21	рН	7.8	(6.5)	-	Mod. Alkaline					
Phosphorus	Conductivity	234	(-)	umho/cm			CL	*		Fertilizer Recommended
Potassium	Nitrate-N	21	(-)	ppm**		Ш				0.4 lbs N/1000sqft
Calcium 10,615 (180) ppm IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII	Phosphorus	210	(50)	ppm	111111111111111111111111111111111111111		juuuuu	mmi	Ш	0 lbs P2O5/1000sqft
Magnesium 342 (50) ppm IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	471	(175)	ppm		1111111111	immy	mmmķ		0 lbs K20/1000sqft
Sulfur 14 (13) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Calcium	10,615	(180)	ppm					I	0 lbs Ca/1000sqft
Sodium 14 (-) ppm II	Magnesium	342	(50)	ppm			,,,,,,,,,,,,,,,,			0 lbs Mg/1000sgft
Iron Zinc Manganese Copper Boron	Sulfur	14	(13)	ppm		1111111111	11111111111	ı		0 lbs S/1000sqft
Iron Zinc Manganese Copper Boron Limestone Requirement 0.00 lbs/1000sqft	Sodium	14	(-)	ppm	II					
Manganese Copper Boron	Iron									
Copper Boron	Zinc									
Boron	Manganese						į			
	Copper						;			
Limestone Requirement 0.00 lbs/1000sqft	Boron									
	Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533163
Customer Sample ID: 1419
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	223	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**	111111111111111111111111111111111111111					0.7 lbs N/1000sqft
Phosphorus	256	(50)	ppm			шшц	mmm	III	0 lbs P2O5/1000sqft
Potassium	350	(175)	ppm	111111111111111111111111111111111111111	IIIIIIIIII	111111111111111111111111111111111111111			0 lbs K20/1000sqft
Calcium	13,509	(180)	ppm				:	:	0 lbs Ca/1000sqft
Magnesium	503	(50)	ppm	111111111111111111111111111111111111111		:			0 lbs Mg/1000sgft
Sulfur	70	(13)	ppm			11111111111	HIIIIII	ı	0 lbs S/1000sqft
Sodium	32	(-)	ppm	1111111					
Iron						¦ ¦			
Zinc						l l			
Manganese						į			
Copper						i			
Boron						<u> </u>			
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533164
Customer Sample ID: 1420

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ЭН	7.6	(6.5)	-	Mod. All	kaline					
Conductivity	221	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	11	(-)	ppm**		I					0.9 lbs N/1000sqft
Phosphorus	730	(50)	ppm				111111111111		1111111	0 lbs P2O5/1000sqft
Potassium	189	(175)	ppm				111111111111)		0 lbs K20/1000sqft
Calcium	5,536	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	370	(50)	ppm		11111111111		111111111111			0 lbs Mg/1000sgft
Sulfur	48	(13)	ppm	11111111111					ı	0 lbs S/1000sqft
Sodium	20	(-)	ppm	Ш						
ron										
Zinc								l		
Vlanganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533165
Customer Sample ID: 1421

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
οH	7.9	(6.5)	-	Mod. Alkaline
Conductivity	283	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	32	(-)	ppm**	
Phosphorus	163	(50)	ppm	
Potassium	131	(175)	ppm	
Calcium	18,057	(180)	ppm	
Magnesium	451	(50)	ppm	
Sulfur	31	(13)	ppm	
Sodium	17	(-)	ppm	
ron				
Zinc				
Vlanganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533166
Customer Sample ID: 1422
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkali	ine					
Conductivity	183	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	38	(50)	ppm	11111111111111111			IIIII			0.9 lbs P2O5/1000sqft
Potassium	238	(175)	ppm		11111111		mmm,	Ш		0 lbs K20/1000sqft
Calcium	9,109	(180)	ppm	111111111111111111111111111111111111111						0 lbs Ca/1000sqft
Magnesium	551	(50)	ppm		11111111				II	0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm					11		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
Iron										
Zinc										
Manganese							į			
Copper							j			
Boron							!			
Limestone Requirement										0.00 lbs/1000sqft
										-

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533167
Customer Sample ID: 1423
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		CI *	l luita							_
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly A	lkaline					
Conductivity	133	(-)	umho/cm	None			CL	* .		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	128	(50)	ppm						II	0 lbs P2O5/1000sqft
Potassium	108	(175)	ppm							1.5 lbs K20/1000sqft
Calcium	2,047	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	98	(50)	ppm				HIIIIIII (A	II		0 lbs Mg/1000sgft
Sulfur	6	(13)	ppm			IIIIII	!			0.5 lbs S/1000sqft
Sodium	1	(-)	ppm							
lron							- ;	İ		
Zinc							-			
Manganese							į			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layed is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533168
Customer Sample ID: 1424

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Al	kaline					
Conductivity	136	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	534	(50)	ppm	1111111111			11111111111	111111111111	IIIIIII	0 lbs P2O5/1000sqft
Potassium	250	(175)	ppm	1111111111		1111111111	111111111111	וווון		0 lbs K20/1000sqft
Calcium	2,866	(180)	ppm	:		:	: ,			0 lbs Ca/1000sqft
Magnesium	327	(50)	ppm				111111111111	1111111		0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm	1111111111	111111111111	11111111111	111111111111	1111111		0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel in the maint w										1 1 11 11

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533169
Customer Sample ID: 1425
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		OL *	I I mit m							
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alka	line					
Conductivity	199	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	119	(50)	ppm						I	0 lbs P2O5/1000sqft
Potassium	204	(175)	ppm	1111111111111						0 lbs K20/1000sqft
Calcium	9,027	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	305	(50)	ppm		111111111		111111111111111111111111111111111111111	111111		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm		ШШЩ	IIIIIIIIII	шин	IIIII		0 lbs S/1000sqft
Sodium	7	(-)	ppm	1						
ron							i			
Zinc							!			
Manganese							į			
Copper							i			
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
CL -Critical layed is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533170
Customer Sample ID: 1426
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLov	v Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly Alkalin	е				
Conductivity	229	(-)	umho/cm	None		CI	<u>*</u>		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**	111111111111					0.9 lbs N/1000sqft
Phosphorus	221	(50)	ppm			1111111111111		IIII	0 lbs P2O5/1000sqft
Potassium	117	(175)	ppm		1	ijii			1.3 lbs K20/1000sqft
Calcium	7,433	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	660	(50)	ppm		11111111111	•		II	0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm		1	1	11111		0 lbs S/1000sqft
Sodium	27	(-)	ppm	111111					
Iron									
Zinc									
Manganese									
Copper						i			
Boron									
Limestone Requirement									0.00 lbs/1000sqft
•									

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533171
Customer Sample ID: 1427
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Al	kaline					
Conductivity	123	(-)	umho/cm	None			. CI	L*		Fertilizer Recommended
litrate-N	3	(-)	ppm**	II						1.3 lbs N/1000sqft
hosphorus	35	(50)	ppm	1111111111	шшш		11111			1.2 lbs P2O5/1000sqft
otassium	366	(175)	ppm	1111111111	ļ		•	,,,,,,,,,,,,		0 lbs K20/1000sqft
Calcium	12,087	(180)	ppm	:	ļuuuuu	:	:		II	0 lbs Ca/1000sqft
Magnesium	283	(50)	ppm	1111111111	ļ		11111111111	111111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm	1111111111	İmmini	ШШШ	1111111			0.25 lbs S/1000sqft
Sodium	3	(-)	ppm							
ron										
inc								l		
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL =Critical level is the point w	which no add	litional nu	trient (exclud	ding nitra	to-N sor	dium an	nd condi	ictivity) i	e rocomi	mended **nnm-ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533172
Customer Sample ID: 1428
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.4	(6.5)	-	Slightly	Alkaline	,				
Conductivity	243	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	1111111111	Ш					0.8 lbs N/1000sqft
Phosphorus	182	(50)	ppm	1111111111					II	0 lbs P2O5/1000sqft
Potassium	301	(175)	ppm	1111111111	11111111111			1111111		0 lbs K20/1000sqft
Calcium	10,259	(180)	ppm					(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
Magnesium	449	(50)	ppm	1111111111						0 lbs Mg/1000sgft
Sulfur	74	(13)	ppm	1111111111				humi	II	0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
*01 0 % 11 1 1 4										1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533173
Customer Sample ID: 1429
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly Al	kaline					
Conductivity	144	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	386	(50)	ppm				mmuni		IIIIII	0 lbs P2O5/1000sqft
Potassium	261	(175)	ppm		mmi		mm	IIII		0 lbs K20/1000sqft
Calcium	6,369	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	471	(50)	ppm	1111111111111111			111111111111111111111111111111111111111		I	0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm					IIIII		0 lbs S/1000sqft
Sodium	4	(-)	ppm							
Iron							ľ			
Zinc										
Manganese										
Copper							i			
Boron							· ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533174
Customer Sample ID: 1400
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	202	(-)	umho/cm	None			CI	<u>*</u>		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	26	(50)	ppm		1111111111111		l			1.9 lbs P2O5/1000sqft
Potassium	235	(175)	ppm	11111111111	111111111111	11111111111		וון וון		0 lbs K20/1000sqft
Calcium	8,442	(180)	ppm					000000	ll .	0 lbs Ca/1000sqft
Magnesium	232	(50)	ppm		111111111111			11111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm				IIIIIII			0.25 lbs S/1000sqft
Sodium	2	(-)	ppm							
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533175
Customer Sample ID: 1401
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alka	line					
Conductivity	652	(-)	umho/cm	Slight			CL			Fertilizer Recommended
Nitrate-N	50	(-)	ppm**				mmm	l		0 lbs N/1000sqft
Phosphorus	116	(50)	ppm				шшф		II	0 lbs P2O5/1000sqft
Potassium	308	(175)	ppm	111111111111111			mmm			0 lbs K20/1000sqft
Calcium	7,002	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	556	(50)	ppm				mmi		II	0 lbs Mg/1000sgft
Sulfur	106	(13)	ppm				шшф		1111111	0 lbs S/1000sqft
Sodium	95	(-)	ppm		ШШ					
Iron							¦			
Zinc										
Manganese							į			
Copper							i			
Boron							l I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533176 Customer Sample ID: 1402 Cron Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019 Printed on: 5/7/2019 Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	148	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
litrate-N	6	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	7	(50)	ppm		Ш					3.4 lbs P2O5/1000sqft
Potassium	95	(175)	ppm	1111111111	1111111111111					1.8 lbs K20/1000sqft
Calcium	12,364	(180)	ppm						II	0 lbs Ca/1000sqft
lagnesium	274	(50)	ppm		111111111111			111111		0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	1111111111	111111111111					0.25 lbs S/1000sqft
Sodium	6	(-)	ppm	1						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL=Critical level is the point w	hich no add	itional nu	trient (evoluc	lina nitrat	a-N soc	dium an	d condi	ictivity) i	s recomi	mended **nnm-ma/ka

CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533177
Customer Sample ID: 1403
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Mod. Al	kaline					
Conductivity	218	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	259	(50)	ppm	ШШШ			111111111111	111111111111111111111111111111111111111	Ш	0 lbs P2O5/1000sqft
Potassium	252	(175)	ppm	1111111111		1111111111	111111111111	וווון		0 lbs K20/1000sqft
Calcium	6,047	(180)	ppm	1111111111						0 lbs Ca/1000sqft
Magnesium	378	(50)	ppm	1111111111			111111111111			0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm	1111111111	11111111111		111111111111	111111		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel is the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533178
Customer Sample ID: 1404
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis pH	Results 7.9	CL*	Units	ExLow	VLow	Low	Mod		Var	_
рН	7.9				V LOW	LOW	Mod	High	VHigh	Excess.
		(6.5)	-	Mod. Alka	aline					
Conductivity	256	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	205	(50)	ppm	1111111111111		IIIIIIIIII	шшц		IIII	0 lbs P2O5/1000sqft
Potassium	276	(175)	ppm		1111111111		шш	111111		0 lbs K20/1000sqft
Calcium	11,636	(180)	ppm	1111111111111					II	0 lbs Ca/1000sqft
Magnesium	335	(50)	ppm	1111111111111		IIIIIIIIII	111111111111111111111111111111111111111	111111111		0 lbs Mg/1000sgft
Sulfur	34	(13)	ppm			IIIIIIIIII	шш			0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
Iron										
Zinc							ļ.			
Manganese										
Copper							i			
Boron							ŀ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533179
Customer Sample ID: 1405
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	276	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	13	(-)	ppm**	11111111111	IIII					0.8 lbs N/1000sqft
Phosphorus	16	(50)	ppm	11111111111		IIIIII				2.7 lbs P2O5/1000sqft
otassium	277	(175)	ppm	11111111111			111111111111	ווווון		0 lbs K20/1000sqft
Calcium	9,298	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	372	(50)	ppm	111111111111						0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm					111		0 lbs S/1000sqft
Sodium	10	(-)	ppm	1						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533181
Customer Sample ID: 1406
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	81	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	5	(50)	ppm	111111111111						3.5 lbs P2O5/1000sqft
Potassium	122	(175)	ppm	11111111111		IIIIIIIIII	11111			1.2 lbs K20/1000sqft
Calcium	8,958	(180)	ppm	11111111111					I	0 lbs Ca/1000sqft
Magnesium	265	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	9	(13)	ppm	11111111111			11111			0.25 lbs S/1000sqft
Sodium	2	(-)	ppm							
ron										
Zinc										
Vlanganese										
Copper										
Boron							,			
Limestone Requirement								·		0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533182 Customer Sample ID: 1407 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	148	(-)	umho/cm	None			CI			Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
hosphorus	26	(50)	ppm	11111111111			l	l I		1.9 lbs P2O5/1000sqft
otassium	161	(175)	ppm	11111111111		1111111111		l I		0.3 lbs K20/1000sqft
Calcium	16,001	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	310	(50)	ppm	11111111111				1111111		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm					11111		0 lbs S/1000sqft
Sodium	5	(-)	ppm							
ron										
linc										
/langanese							į			
Copper							i			
Boron							, ,			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533183
Customer Sample ID: 1408
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results		Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. Al	kaline					
102	(-)	umho/cm	None			CL	*		Fertilizer Recommended
2	(-)	ppm**							1.4 lbs N/1000sqft
50	(50)	ppm				ļ111111111¢	l		0 lbs P2O5/1000sqft
195	(175)	ppm)	l		0 lbs K20/1000sqft
6,940	(180)	ppm	:		:	: .		II	0 lbs Ca/1000sqft
288	(50)	ppm	1111111111				IIIII		0 lbs Mg/1000sgft
11	(13)	ppm	11111111111		ШШШ	111111111			0.25 lbs S/1000sqft
27	(-)	ppm	ШШ						
						į			
						;			
						!			
									0.00 lbs/1000sqft
	7.8 102 2 50 195 6,940 288 11	Results CL* 7.8 (6.5) 102 (-) 2 (-) 50 (50) 195 (175) 6,940 (180) 288 (50) 11 (13)	Results CL* Units 7.8 (6.5) - 102 (-) umho/cm 2 (-) ppm** 50 (50) ppm 195 (175) ppm 6,940 (180) ppm 288 (50) ppm 11 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. Al 102 (-) umho/cm None 2 (-) ppm** - 50 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 102 (-) umho/cm None 2 (-) ppm** 50 (50) ppm 195 (175) ppm 6,940 (180) ppm 288 (50) ppm 11 (13) ppm	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 102 (-) umho/cm None - 2 (-) ppm*** - 50 (50) ppm 195 (175) ppm	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533184
Customer Sample ID: 1409
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	132	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	11	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	60	(50)	ppm				######################################	III		0 lbs P2O5/1000sqft
Potassium	220	(175)	ppm				11111111111	II		0 lbs K20/1000sqft
Calcium	7,333	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	282	(50)	ppm				111111111111	IIIIII		0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	11111111111			1111111			0.25 lbs S/1000sqft
Sodium	14	(-)	ppm	II .						
Iron							ľ			
Zinc							l ¦			
Manganese							į			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft
CL Critical layed in the mainty									. —	

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533185
Customer Sample ID: 1410
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	186	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	Ш						1.2 lbs N/1000sqft
Phosphorus	223	(50)	ppm	ШШШ			11111111111	IIIIIIII	Ш	0 lbs P2O5/1000sqft
Potassium	327	(175)	ppm	11111111111			11111111111	1111111		0 lbs K20/1000sqft
Calcium	13,472	(180)	ppm				111111111111111111111111111111111111111			0 lbs Ca/1000sqft
Magnesium	540	(50)	ppm		111111111111		11111111111	IIIIIIIII	II	0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm		111111111111		11111111111	III		0 lbs S/1000sqft
Sodium	9	(-)	ppm	1						
Iron							· ·			
Zinc										
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533186
Customer Sample ID: 1411
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		OI *								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	179	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	12	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	66	(50)	ppm					11111		0 lbs P2O5/1000sqft
Potassium	367	(175)	ppm							0 lbs K20/1000sqft
Calcium	11,434	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	270	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	111111111111			11111111111	111111		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
ron										
Zinc										
Manganese										
Copper										
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft
-										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533187
Customer Sample ID: 1412
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
H	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	221	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	56	(50)	ppm	11111111111	111111111111		,,,,,,,,,,,	II .		0 lbs P2O5/1000sqft
Potassium	429	(175)	ppm	11111111111	111111111111		11111111111	mmi		0 lbs K20/1000sqft
Calcium	15,914	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	443	(50)	ppm		111111111111			шшш		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm		111111111111		11111111111	III		0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533188
Customer Sample ID: 1413
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Nitrate-N 18 (-) ppm**	
Conductivity 236 (-) umho/cm None CL Fertil	
Nitrate-N 18 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Phosphorus 159 (50) ppm	izer Recommended
Potassium	0.6 lbs N/1000sqft
Calcium 5,208 (180) ppm	0 lbs P2O5/1000sqft
Magnesium 539 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0 lbs K20/1000sqft
Sulfur 41 (13) ppm	0 lbs Ca/1000sqft
Sodium 10 (-) ppm II Iron	0 lbs Mg/1000sgft
Iron	0 lbs S/1000sqft
· · · · · · · · · · · · · · · · · · ·	
Zinc	
Manganese	
Copper	
Boron	
Limestone Requirement 0.0	00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533189
Customer Sample ID: 1414
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.5	(6.5)	-	Slightly /	Alkaline					
235	(-)	umho/cm	None			CL	*		Fertilizer Recommended
2	(-)	ppm**	ı						1.3 lbs N/1000sqft
89	(50)	ppm				шин			0 lbs P2O5/1000sqft
211	(175)	ppm				mmn	II .		0 lbs K20/1000sqft
12,413	(180)	ppm	11111111111		IIIIIIIIII		mmi	II	0 lbs Ca/1000sqft
404	(50)	ppm				111111111111111111111111111111111111111	HHHHH	ı	0 lbs Mg/1000sgft
28	(13)	ppm				1111111111 1			0 lbs S/1000sqft
12	(-)	ppm	II						
						ļ	İ		
						į			
						i			
						I I			
									0.00 lbs/1000sqft
	7.5 235 2 89 211 12,413 404 28	Results CL* 7.5 (6.5) 235 (-) 2 (-) 89 (50) 211 (175) 12,413 (180) 404 (50) 28 (13)	Results CL* Units 7.5 (6.5) - 235 (-) umho/cm 2 (-) ppm** 89 (50) ppm 211 (175) ppm 12,413 (180) ppm 404 (50) ppm 28 (13) ppm	Results CL* Units ExLow 7.5 (6.5) - Slightly // None 235 (-) umho/cm None 2 (-) ppm*** I 89 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533190
Customer Sample ID: 1430
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	Ful sur	VII	1	Mad	Himb	VIII: ach	France
-		_		ExLow Mod. All	VLow	Low	Mod	High	VHigh	Excess.
OH No reduce the site of	8.2	(6.5)	-		kaiine					Fastilian Daganas as dad
Conductivity	129	(-)	umho/cm	None			CI	*	: :	Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	2	(50)	ppm	III						3.8 lbs P2O5/1000sqft
Potassium	120	(175)	ppm		:					1.2 lbs K20/1000sqft
Calcium	37,524	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	261	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	9	(-)	ppm	ı						
ron										
Zinc Zinc										
/langanese										
Copper										
Boron							ı			
imestone Requirement										0.00 lbs/1000sqft
CL Critical lavel is the paint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533191
Customer Sample ID: 1431
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	130	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	4	(-)	ppm**	II						1.3 lbs N/1000sqft
hosphorus	20	(50)	ppm	11111111111						2.4 lbs P2O5/1000sqft
otassium	182	(175)	ppm	11111111111	111111111111)		0 lbs K20/1000sqft
Calcium	18,659	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	367	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	6	(-)	ppm	1						
ron										
linc										
/langanese							i			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533192
Customer Sample ID: 1432
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN								
Analysis	Results	CL*	Units	ExLow VL	ow Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alkaline					
Conductivity	225	(-)	umho/cm	None			CL*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**		ШШ				0.4 lbs N/1000sqft
Phosphorus	118	(50)	ppm		ШШШ	Щинин	ķ umuni	II	0 lbs P2O5/1000sqft
Potassium	276	(175)	ppm		ШШШ	Щинин	ţiiii		0 lbs K20/1000sqft
Calcium	9,870	(180)	ppm					II	0 lbs Ca/1000sqft
Magnesium	366	(50)	ppm		ШШШШ	111111111111111111111111111111111111111	4 00000		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm		1111111111111	111111111111111111111111111111111111111	ķ IIII		0 lbs S/1000sqft
Sodium	73	(-)	ppm						
Iron							:		
Zinc							1		
Manganese									
Copper							i		
Boron							¦		
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533193
Customer Sample ID: 1433
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	Results	CL*	Units	Ful acc	VII accor	1	Mad	Harla	\/I !!!	F
Analysis			Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH Dana kandinitan	7.9	(6.5)	-	Mod. Alk	kaiine					Facilities Bases and declar
Conductivity	126	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	l						1.3 lbs N/1000sqft
Phosphorus	57	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	294	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	13,443	(180)	ppm				: .			0 lbs Ca/1000sqft
Magnesium	405	(50)	ppm		111111111111		111111111111111111111111111111111111111		l	0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm	11111111111			11111111111	III 📗		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
ron							ļ			
Zinc							!			
Manganese							i			
Copper										
Boron							:			
imestone Requirement										0.00 lbs/1000sqft
•										·
CL -Critical lovel is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533194
Customer Sample ID: 1434
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow VL	Low	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alkalin	е					
Conductivity	198	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**		Ш					0.7 lbs N/1000sqft
Phosphorus	115	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	638	(175)	ppm							0 lbs K20/1000sqft
Calcium	14,117	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	282	(50)	ppm	111111111111111111111111111111111111111				111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm				1111111111	11111		0 lbs S/1000sqft
Sodium	8	(-)	ppm	ı						
Iron										
Zinc										
Manganese							į			
Copper							j			
Boron							!			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533195
Customer Sample ID: 1435
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alka	aline					
Conductivity	194	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	120	(50)	ppm	1111111111111					II	0 lbs P2O5/1000sqft
Potassium	611	(175)	ppm						II	0 lbs K20/1000sqft
Calcium	7,460	(180)	ppm	1111111111111					II	0 lbs Ca/1000sqft
/lagnesium	332	(50)	ppm	111111111111				IIIIIII		0 lbs Mg/1000sgft
Sulfur	20	(13)	ppm	111111111111				IIIII		0 lbs S/1000sqft
Sodium	42	(-)	ppm	11111111						
ron										
Zinc Zinc										
Manganese							i			
Copper							l			
Boron										
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical laval in the maint										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533196
Customer Sample ID: 1436
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		O1 *								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	217	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	21	(-)	ppm**	11111111111						0.4 lbs N/1000sqft
Phosphorus	18	(50)	ppm			IIIIIII				2.5 lbs P2O5/1000sqft
Potassium	377	(175)	ppm					11111111111		0 lbs K20/1000sqft
Calcium	12,394	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	319	(50)	ppm	11111111111				1111111		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	11111111111				111111		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement				· ·				·		0.00 lbs/1000sqft
-										
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533197
Customer Sample ID: 1437
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alka	line					
Conductivity	323	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	80	(50)	ppm				mmuni	IIIIII		0 lbs P2O5/1000sqft
Potassium	174	(175)	ppm		IIIIIIII		шшшқ			0 lbs K20/1000sqft
Calcium	8,412	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	769	(50)	ppm				111111111111111111111111111111111111111	mmmi	I	0 lbs Mg/1000sgft
Sulfur	50	(13)	ppm					mmi		0 lbs S/1000sqft
Sodium	201	(-)	ppm			III				
Iron										
Zinc										
Manganese										
Copper							i			
Boron							· ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533198
Customer Sample ID: 1437
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkal	line					
Conductivity	238	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	62	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	155	(175)	ppm		mmi					0.4 lbs K20/1000sqft
Calcium	9,179	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	572	(50)	ppm				111111111111111111111111111111111111111	IIIIIIIII	II	0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm							0 lbs S/1000sqft
Sodium	158	(-)	ppm			Ш				
Iron										
Zinc										
Manganese										
Copper							i			
Boron							· ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533199 Customer Sample ID: 1438 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	173	(-)	umho/cm	None			CI	<u>*</u>		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	105	(50)	ppm					11111111111	II	0 lbs P2O5/1000sqft
Potassium	198	(175)	ppm	11111111111)		0 lbs K20/1000sqft
Calcium	8,940	(180)	ppm	11111111111	:			. :	II	0 lbs Ca/1000sqft
Magnesium	273	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm					11111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533200
Customer Sample ID: 1439
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	302	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	36	(-)	ppm**	
Phosphorus	483	(50)	ppm	
Potassium	377	(175)	ppm	
Calcium	15,996	(180)	ppm	
Magnesium	457	(50)	ppm	
Sulfur	36	(13)	ppm	
Sodium	11	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533201 Customer Sample ID: 1440 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	261	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
hosphorus	6	(50)	ppm	11111111111	I					3.5 lbs P2O5/1000sqft
otassium	239	(175)	ppm	11111111111				Ш		0 lbs K20/1000sqft
Calcium	11,620	(180)	ppm	11111111111	:				II	0 lbs Ca/1000sqft
Magnesium	227	(50)	ppm	11111111111				IIIII		0 lbs Mg/1000sgft
Sulfur	86	(13)	ppm	11111111111				111111111111	Ш	0 lbs S/1000sqft
Sodium	146	(-)	ppm	11111111111		Ш				
ron										
linc										
/langanese							i			
Copper							ľ			
Boron										
imestone Requirement				•					·	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533202
Customer Sample ID: 1441
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. All	kaline					
213	(-)	umho/cm	None			CI	<u>*</u>		Fertilizer Recommended
2	(-)	ppm**							1.4 lbs N/1000sqft
194	(50)	ppm		1111111111111	IIIIIIIIIII	111111111111		II	0 lbs P2O5/1000sqft
123	(175)	ppm		1111111111111	ШШШ	11111			1.1 lbs K20/1000sqft
11,865	(180)	ppm					. :	:	0 lbs Ca/1000sqft
524	(50)	ppm		111111111111	IIIIIIIIII	111111111111		I .	0 lbs Mg/1000sgft
34	(13)	ppm	11111111111			111111111111	1111111		0 lbs S/1000sqft
133	(-)	ppm		1111111111111	I				
						i			
									0.00 lbs/1000sqft
	7.9 213 2 194 123 11,865 524 34 133	7.9 (6.5) 213 (-) 2 (-) 194 (50) 123 (175) 11,865 (180) 524 (50) 34 (13) 133 (-)	7.9 (6.5) - 213 (-) umho/cm 2 (-) ppm** 194 (50) ppm 123 (175) ppm 11,865 (180) ppm 524 (50) ppm 34 (13) ppm 133 (-) ppm	7.9 (6.5) - Mod. All 213 (-) umho/cm None 2 (-) ppm** 194 (50) ppm	7.9 (6.5) - Mod. Alkaline 213 (-) umho/cm 2 (-) ppm** 194 (50) ppm	7.9 (6.5) - Mod. Alkaline 213 (-) umho/cm	7.9 (6.5) - Mod. Alkaline 213 (-) umho/cm None c 2 (-) ppm** 194 (50) ppm	7.9 (6.5) - Mod. Alkaline 213 (-) umho/cm None Ct- 2 (-) ppm** 194 (50) ppm	7.9 (6.5) - Mod. Alkaline 213 (-) umho/cm 2 (-) ppm** 194 (50) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (50) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm 11,865 (180) ppm

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533203
Customer Sample ID: 1442
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	102	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	10	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	36	(50)	ppm			IIIIIIIIII	11111			1 lbs P2O5/1000sqft
Potassium	200	(175)	ppm	111111111111	1111111111			II		0 lbs K20/1000sqft
Calcium	21,114	(180)	ppm	111111111111					II	0 lbs Ca/1000sqft
//agnesium	228	(50)	ppm			IIIIIIIIIII		Ш		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm	111111111111				111111		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
ron										
Zinc Zinc										
Manganese										
Copper										
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533204
Customer Sample ID: 1443
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Crop Grown: G	ARDEN								
Conductivity 202 (-)	-	Results	CL*	Units	ExLow VLo	v Low	Mod	High	VHigh	Excess.
Nitrate-N 15 (-) ppm**	рН	7.8	(6.5)	-	Mod. Alkaline					
Phosphorus 55 (50) ppm	Conductivity	202	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Potassium 335 (175) ppm	Nitrate-N	15	(-)	ppm**		II				0.7 lbs N/1000sqft
Calcium 8,391 (180) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Phosphorus	55	(50)	ppm	111111111111111111111111111111111111111		######################################	11		0 lbs P2O5/1000sqft
Magnesium 372 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	335	(175)	ppm		Щинин	#mmmt	111111111		0 lbs K20/1000sqft
Sulfur 16 (13) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Calcium	8,391	(180)	ppm						0 lbs Ca/1000sqft
Sodium 22 (-) ppm IIII IIIII IIIIII IIIIIII IIIIIII IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Magnesium	372	(50)	ppm			400000			0 lbs Mg/1000sgft
Iron Zinc Manganese Copper Boron	Sulfur	16	(13)	ppm	111111111111111111111111111111111111111	Щинин	inninini,	II		0 lbs S/1000sqft
Zinc Manganese Copper Boron	Sodium	22	(-)	ppm	IIII					
Manganese Copper Boron	Iron									
Copper Boron	Zinc						1 1			
Boron	Manganese						i			
	Copper						i			
Limestone Requirement 0.00 lbs/1000sqft	Boron									
	Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533205
Customer Sample ID: 1444
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. All	kaline					
Conductivity	175	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	34	(50)	ppm	11111111111			11111	l		1.2 lbs P2O5/1000sqft
Potassium	219	(175)	ppm		111111111111		11111111111	11		0 lbs K20/1000sqft
Calcium	15,466	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	391	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm	11111111111			111111111111	11111		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533206
Customer Sample ID: 1445
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	353	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	134	(50)	ppm			IIIIIIIIII	шш	mmmi	I	0 lbs P2O5/1000sqft
Potassium	535	(175)	ppm	1111111111111	1111111111	IIIIIIIIII		mmi		0 lbs K20/1000sqft
Calcium	20,136	(180)	ppm	1111111111111					I	0 lbs Ca/1000sqft
Magnesium	387	(50)	ppm	1111111111111	1111111111	1111111111				0 lbs Mg/1000sgft
Sulfur	140	(13)	ppm	1111111111111		IIIIIIIIII		mmi	11111111	0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
Iron							i			
Zinc							ļ			
Manganese							i			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533207 **Customer Sample ID:** 1447

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019 Printed on: 5/7/2019 Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
8.0	(6.5)	-	Mod. All	kaline					
146	(-)	umho/cm	None			С	L*		Fertilizer Recommended
2	(-)	ppm**							1.4 lbs N/1000sqft
4	(50)	ppm	IIIIIIII						3.6 lbs P2O5/1000sqft
252	(175)	ppm		111111111111		111111111111	(HIIII		0 lbs K20/1000sqft
16,963	(180)	ppm						II	0 lbs Ca/1000sqft
153	(50)	ppm		111111111111		111111111111	AII		0 lbs Mg/1000sgft
6	(13)	ppm			Ш				0.5 lbs S/1000sqft
19	(-)	ppm	Ш						
							,		
									0.00 lbs/1000sqft
	8.0 146 2 4 252 16,963 153 6 19	Results CL* 8.0 (6.5) 146 (-) 2 (-) 4 (50) 252 (175) 16,963 (180) 153 (50) 6 (13) 19 (-)	Results CL* Units 8.0 (6.5) - 146 (-) umho/cm 2 (-) ppm** 4 (50) ppm 252 (175) ppm 16,963 (180) ppm 6 (13) ppm 19 (-) ppm	Results CL* Units ExLow	Results CL* Units ExLow VLow	Results CL* Units ExLow VLow Low	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533208
Customer Sample ID: 1448
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Results	CL*	1114							
	OL.	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.9	(6.5)	-	Mod. Alk	aline					
220	(-)	umho/cm	None			CL	*		Fertilizer Recommended
16	(-)	ppm**	1111111111111		ı				0.6 lbs N/1000sqft
103	(50)	ppm	1111111111111			mm	ШШЩ	I	0 lbs P2O5/1000sqft
511	(175)	ppm	111111111111			mmmt	шшщ		0 lbs K20/1000sqft
7,708	(180)	ppm							0 lbs Ca/1000sqft
474	(50)	ppm					ШШШ		0 lbs Mg/1000sgft
23	(13)	ppm	111111111111			mmt	Ш		0 lbs S/1000sqft
22	(-)	ppm	Ш						
						· ·			
						- :			
						į			
						i			
						!			
									0.00 lbs/1000sqft
	220 16 103 511 7,708 474 23	220 (-) 16 (-) 103 (50) 511 (175) 7,708 (180) 474 (50) 23 (13)	220 (-) umho/cm 16 (-) ppm** 103 (50) ppm 511 (175) ppm 7,708 (180) ppm 474 (50) ppm 23 (13) ppm	220 (-) umho/cm None 16 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	220 (-) umho/cm None 16 (-) ppm**	220 (-) umho/cm None 16 (-) ppm** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	220 (-) umho/cm None cl 16 (-) ppm**	220	220

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533209
Customer Sample ID: 1449
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		CI *	l luita							_
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	159	(-)	umho/cm	None			CI	* .		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	I						1.3 lbs N/1000sqft
Phosphorus	14	(50)	ppm							2.8 lbs P2O5/1000sqft
Potassium	341	(175)	ppm							0 lbs K20/1000sqft
Calcium	13,821	(180)	ppm				: ,		II	0 lbs Ca/1000sqft
Magnesium	199	(50)	ppm		111111111111		111111111111	Ш		0 lbs Mg/1000sgft
Sulfur	9	(13)	ppm				Ш			0.25 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
ron										
Zinc								·		
Vlanganese										
Copper										
Boron							,			
imestone Requirement								·	·	0.00 lbs/1000sqft
CL -Critical lovel is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533211
Customer Sample ID: 1450

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly A	lkaline					
Conductivity	384	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	48	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	380	(50)	ppm				::::::::¢	IIIIIIIII (IIIIII	0 lbs P2O5/1000sqft
Potassium	372	(175)	ppm				mmn			0 lbs K20/1000sqft
Calcium	7,562	(180)	ppm	11111111111111						0 lbs Ca/1000sqft
Magnesium	472	(50)	ppm	1111111111111					l l	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	111111111111111						0 lbs S/1000sqft
Sodium	52	(-)	ppm	11111111111						
Iron							ļ			
Zinc							l			
Manganese							į			
Copper							i			
Boron							 			
Limestone Requirement										0.00 lbs/1000sqft
01 0 36 11 13 41 3 4								\ ·		1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533212
Customer Sample ID: 1451
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	142	(-)	umho/cm	None			CI	.*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	160	(50)	ppm					111111111111	III	0 lbs P2O5/1000sqft
Potassium	220	(175)	ppm					11		0 lbs K20/1000sqft
Calcium	8,974	(180)	ppm	11111111111				. :	II	0 lbs Ca/1000sqft
Magnesium	270	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc										
Manganese							i			
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533213
Customer Sample ID: 1452
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk		2011	mou		villigii	Execus.
Conductivity	68	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	27	(50)	ppm	11111111111			l			1.8 lbs P2O5/1000sqft
Potassium	177	(175)	ppm	11111111111				l		0 lbs K20/1000sqft
Calcium	9,529	(180)	ppm	11111111111				(11111111111	II	0 lbs Ca/1000sqft
/lagnesium	181	(50)	ppm	11111111111				IIIII		0 lbs Mg/1000sgft
Sulfur	9	(13)	ppm	11111111111			IIIII			0.25 lbs S/1000sqft
Sodium	9	(-)	ppm							
ron										
Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533214
Customer Sample ID: 1453
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly	Alkaline					
Conductivity	189	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	503	(50)	ppm		111111111111		11111111111		IIIIIII	0 lbs P2O5/1000sqft
Potassium	419	(175)	ppm				11111111111	mmi	ı	0 lbs K20/1000sqft
Calcium	6,051	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	616	(50)	ppm		111111111111		11111111111	HHHHH	II .	0 lbs Mg/1000sgft
Sulfur	33	(13)	ppm	11111111111	111111111111		11111111111			0 lbs S/1000sqft
Sodium	40	(-)	ppm	11111111						
Iron							ŀ			
Zinc							1			
Manganese							į			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533215
Customer Sample ID: 1454
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	247	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	19	(-)	ppm**	11111111111		Ш				0.5 lbs N/1000sqft
Phosphorus	86	(50)	ppm	11111111111				11111111111		0 lbs P2O5/1000sqft
Potassium	407	(175)	ppm	11111111111				mmmi	l l	0 lbs K20/1000sqft
Calcium	6,670	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	399	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm	11111111111				111		0 lbs S/1000sqft
Sodium	34	(-)	ppm	1111111						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533216
Customer Sample ID: 1455
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.2	(6.5)	-	Mod. Alk	aline					
Conductivity	143	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	0	(50)	ppm							3.9 lbs P2O5/1000sqft
Potassium	187	(175)	ppm		111111111111	IIIIIIIIII	mmm)		0 lbs K20/1000sqft
Calcium	40,270	(180)	ppm					. :	II	0 lbs Ca/1000sqft
Magnesium	249	(50)	ppm					11111		0 lbs Mg/1000sgft
Sulfur	8	(13)	ppm]			0.25 lbs S/1000sqft
Sodium	22	(-)	ppm	Ш						
ron										
Zinc										
Manganese							į			
Copper							i			
Boron							l I			
imestone Requirement								·	·	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533217
Customer Sample ID: 1456
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Slightly	Alkaline)				
Conductivity	272	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	29	(-)	ppm**		11111111111		1			0 lbs N/1000sqft
Phosphorus	615	(50)	ppm		11111111111		11111111111	11111111111	IIIIIII	0 lbs P2O5/1000sqft
Potassium	232	(175)	ppm		11111111111		11111111111	Ш		0 lbs K20/1000sqft
Calcium	12,720	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	654	(50)	ppm	11111111111	11111111111			11111111111	II .	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	11111111111	11111111111		11111111111	111111111		0 lbs S/1000sqft
Sodium	26	(-)	ppm	111111						
Iron										
Zinc										
Manganese										
Copper										
Boron							,			
Limestone Requirement										0.00 lbs/1000sqft
21 0 20 11 12 01 2 0								\ ·		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533218
Customer Sample ID: 1457
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. All	caline					
Conductivity	138	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	14	(50)	ppm	11111111111	111111111111	Ш	ļ			2.8 lbs P2O5/1000sqft
Potassium	162	(175)	ppm	11111111111	111111111111		111111111111111111111111111111111111111			0.3 lbs K20/1000sqft
Calcium	7,745	(180)	ppm	11111111111	111111111111		11111111111		II	0 lbs Ca/1000sqft
Magnesium	201	(50)	ppm		111111111111			IIIII		0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	11111111111	111111111111		шшш	IIIIII		0 lbs S/1000sqft
Sodium	16	(-)	ppm	Ш						
Iron							· ·			
Zinc							ļ			
Manganese							į			
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533219
Customer Sample ID: 1458
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		OL *	11							
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	257	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	27	(-)	ppm**							0.1 lbs N/1000sqft
Phosphorus	42	(50)	ppm							0.6 lbs P2O5/1000sqft
Potassium	402	(175)	ppm							0 lbs K20/1000sqft
Calcium	10,618	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	300	(50)	ppm					1111111		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm					Ш		0 lbs S/1000sqft
Sodium	19	(-)	ppm	III						
ron										
Zinc										
/langanese							i			
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
										·
Cl. Critical laval is the resint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533220
Customer Sample ID: 1459
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	caline					
Conductivity	137	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	II .						1.3 lbs N/1000sqft
Phosphorus	6	(50)	ppm	11111111111	III		ľ			3.4 lbs P2O5/1000sqft
Potassium	188	(175)	ppm	11111111111		11111111111	11111111111	1		0 lbs K20/1000sqft
Calcium	18,430	(180)	ppm	11111111111			: .	. :	II	0 lbs Ca/1000sqft
/lagnesium	213	(50)	ppm				111111111111	11111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm	11111111111			1111111			0.25 lbs S/1000sqft
Sodium	9	(-)	ppm	1						
ron							l l			
linc										
/langanese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft
CI -Critical level is the point w	hich no add	itional nu	triant (avalue	lina nitrata	o NI cod	lium on	d condu	otivity) i	0 100000	mandad **nam ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533221
Customer Sample ID: 1460
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
pH	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	106	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	19	(50)	ppm			IIIIIIII				2.4 lbs P2O5/1000sqft
Potassium	241	(175)	ppm	11111111111		1111111111	iiiiiiiiiiii	III		0 lbs K20/1000sqft
Calcium	14,483	(180)	ppm		:				II	0 lbs Ca/1000sqft
Magnesium	208	(50)	ppm					IIIII		0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm					IIIIIII		0 lbs S/1000sqft
Sodium	35	(-)	ppm	1111111						
Iron										
Zinc										
Manganese							ļ			
Copper							i			
Boron							, ,			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533222
Customer Sample ID: 1461
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
OH	7.9	(6.5)	-	Mod. Alka		LOW	WIOU	nigii	vnigii	EXCESS.
Conductivity	126	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	9	(-)	ppm**				CL			1 lbs N/1000sqft
Phosphorus	51	(50)	ppm	111111111111				ı		0 lbs P2O5/1000sqft
otassium	243	(175)	ppm							0 lbs K20/1000sqft
Calcium	10,999	(180)	ppm	111111111111					II	0 lbs Ca/1000sqft
Magnesium	241	(50)	ppm		:		: .			0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	111111111111						0.25 lbs S/1000sqft
Sodium	6	(-)	ppm							0.20 .50 0/ 100004.1
ron		()								
linc										
/langanese										
Copper										
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533223
Customer Sample ID: 1462
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	7.7	(6.5)	-	Mod. All						
Conductivity	53	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	85	(50)	ppm	11111111111			11111111111	111111111		0 lbs P2O5/1000sqft
Potassium	82	(175)	ppm		11111111111			l I		2.1 lbs K20/1000sqft
Calcium	3,268	(180)	ppm	11111111111	11111111111			III		0 lbs Ca/1000sqft
Magnesium	104	(50)	ppm		111111111111			Ш		0 lbs Mg/1000sgft
Sulfur	5	(13)	ppm	11111111111		Ш				0.5 lbs S/1000sqft
Sodium	7	(-)	ppm	ı						
lron										
Zinc										
Manganese										
Copper										
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533224
Customer Sample ID: 1463
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	152	(-)	umho/cm	None			CL	<i>*</i>		Fertilizer Recommended
Nitrate-N	12	(-)	ppm**							0.9 lbs N/1000sqft
Phosphorus	119	(50)	ppm						ll .	0 lbs P2O5/1000sqft
Potassium	394	(175)	ppm	111111111111				1111111111		0 lbs K20/1000sqft
Calcium	6,593	(180)	ppm	111111111111				mmi	II	0 lbs Ca/1000sqft
Magnesium	403	(50)	ppm		11111111111			mmi	l	0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	111111111111			шшш	Ш		0 lbs S/1000sqft
Sodium	19	(-)	ppm	Ш						
Iron							ļ	l		
Zinc										
Manganese							i			
Copper							i			
Boron							 			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533225 Customer Sample ID: 1465

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis Results CL* Units pH 8.4 (6.5) - Conductivity 1,477 (-) umho/cm Nitrate-N 2 (-) ppm** Phosphorus 712 (50) ppm Potassium 2305 (175) ppm Calcium 1,695 (180) ppm	Mod. Alkaline
Conductivity 1,477 (-) umho/cm Nitrate-N 2 (-) ppm** Phosphorus 712 (50) ppm Potassium 2305 (175) ppm	Moderate CL* Fertilizer Recommended
Nitrate-N 2 (-) ppm** Phosphorus 712 (50) ppm Potassium 2305 (175) ppm	1.4 lbs N/1000sqft
Phosphorus 712 (50) ppm Potassium 2305 (175) ppm	
Potassium 2305 (175) ppm	
(-) [1	
Calcium 1,695 (180) ppm	
Magnesium 379 (50) ppm	
Sulfur 98 (13) ppm	
Sodium 366 (-) ppm	
Iron	
Zinc	
Manganese	
Copper	
Boron	
Limestone Requirement	0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533226 Customer Sample ID: 1468 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. All	kaline					
Conductivity	167	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
hosphorus	2	(50)	ppm	III						3.8 lbs P2O5/1000sqft
otassium	117	(175)	ppm		111111111111	IIIIIIIIII	III :			1.3 lbs K20/1000sqft
Calcium	36,597	(180)	ppm	11111111111				. :	II	0 lbs Ca/1000sqft
Magnesium (172	(50)	ppm			IIIIIIIIII		Ш		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm			IIIIIIIIII	!!!!!!!!!!!	ı		0 lbs S/1000sqft
Godium	36	(-)	ppm	1111111						
ron										
linc										
/langanese							i			
Copper										
Boron										
imestone Requirement					•					0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533227
Customer Sample ID: 1470
Crop Group: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. All	kaline					
Conductivity	143	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	114	(50)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,	II	0 lbs P2O5/1000sqft
Potassium	304	(175)	ppm	1111111111			•	1111111		0 lbs K20/1000sqft
Calcium	5,769	(180)	ppm			:	:			0 lbs Ca/1000sqft
Magnesium	270	(50)	ppm	1111111111	11111111111		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111		0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	1111111111	11111111111		1111111			0.25 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI Critical laval in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533228
Customer Sample ID: 1550
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH.	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	274	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
Nitrate-N	41	(-)	ppm**							0 lbs N/1000sqft
Phosphorus	106	(50)	ppm					11111111111	I	0 lbs P2O5/1000sqft
Potassium	357	(175)	ppm	11111111111				,,,,,,,,,,,		0 lbs K20/1000sqft
Calcium	17,309	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	426	(50)	ppm					///////////	l	0 lbs Mg/1000sgft
Sulfur	42	(13)	ppm	111111111111				11111111111		0 lbs S/1000sqft
Sodium	24	(-)	ppm	IIII						
ron										
Zinc										
Manganese							i			
Copper							i			
Boron							ļ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533229
Customer Sample ID: 1551
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN				
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess	
рН	7.2	(6.5)	-	lightly Alkaline	
Conductivity	394	(-)	umho/cm	one _{CL*} F	ertilizer Recommended
Nitrate-N	49	(-)	ppm**	1111111	0 lbs N/1000sqft
Phosphorus	381	(50)	ppm		0 lbs P2O5/1000sqft
Potassium	237	(175)	ppm	11111111111111111111111111111111111111	0 lbs K20/1000sqft
Calcium	6,847	(180)	ppm	11111111 11111111 111111 111 111 111 1	0 lbs Ca/1000sqft
Magnesium	609	(50)	ppm		0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm		0 lbs S/1000sqft
Sodium	27	(-)	ppm	IIII	
Iron					
Zinc				<u> </u>	
Manganese					
Copper					
Boron					
Limestone Requirement					0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533230
Customer Sample ID: 1552
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow V	/Low	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkalir	ne					
Conductivity	316	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	1						1.3 lbs N/1000sqft
Phosphorus	132	(50)	ppm				шшц	ummini	l	0 lbs P2O5/1000sqft
Potassium	468	(175)	ppm		ШЩ	ШШШ	mmm	mmmi		0 lbs K20/1000sqft
Calcium	18,734	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	549	(50)	ppm		ШШШ	ШШШ	mmi		l	0 lbs Mg/1000sgft
Sulfur	61	(13)	ppm				шш	ınınınığı	l	0 lbs S/1000sqft
Sodium	62	(-)	ppm							
Iron							l l			
Zinc							ļ.			
Manganese							į.			
Copper							i			
Boron							I I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533231
Customer Sample ID: 1553
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly A	lkaline					
Conductivity	227	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	30	(-)	ppm**		ШШЩ		Ш			0 lbs N/1000sqft
Phosphorus	314	(50)	ppm				шшц		ШШ	0 lbs P2O5/1000sqft
Potassium	288	(175)	ppm		ШШЩ	1111111111	mmm	IIIIII		0 lbs K20/1000sqft
Calcium	7,257	(180)	ppm	1111111111111111						0 lbs Ca/1000sqft
Magnesium	463	(50)	ppm	111111111111111			mmi		l .	0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm				шш	IIIIIII		0 lbs S/1000sqft
Sodium	38	(-)	ppm	1111111						
Iron							ľ			
Zinc										
Manganese										
Copper							i			
Boron							¦			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533232
Customer Sample ID: 1554
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.6	(6.5)	-	Mod. Alkaline
Conductivity	14	(-)	umho/cm	
Nitrate-N	15	(-)	ppm**	
Phosphorus	265	(50)	ppm	
Potassium	212	(175)	ppm	
Calcium	6,812	(180)	ppm	
Magnesium	559	(50)	ppm	
Sulfur	21	(13)	ppm	
Sodium	29	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrote N. codium and conductivity) is recommended **ppp poulse

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533233
Customer Sample ID: 1555
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Al	kaline					
Conductivity	216	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	15	(50)	ppm	11111111111	111111111111	Ш				2.8 lbs P2O5/1000sqft
Potassium	401	(175)	ppm	1111111111	111111111111			,,,,,,,,,,,,,,,	I	0 lbs K20/1000sqft
Calcium	4,964	(180)	ppm	:	111111111111	:	:			0 lbs Ca/1000sqft
Magnesium	183	(50)	ppm	1111111111				11111		0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm	1111111111	1111111111111			11		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
Iron										
Zinc										
Manganese										
Copper										
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533234
Customer Sample ID: 1556
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	206	(-)	umho/cm	None			CL	.*		Fertilizer Recommended
Nitrate-N	5	(-)	ppm**	IIII						1.2 lbs N/1000sqft
Phosphorus	382	(50)	ppm		1111111111111		шшц	mmmi	IIIII	0 lbs P2O5/1000sqft
Potassium	741	(175)	ppm	11111111111	1111111111111		111111111111111111111111111111111111111	mmi	II .	0 lbs K20/1000sqft
Calcium	8,538	(180)	ppm				: .			0 lbs Ca/1000sqft
/lagnesium	646	(50)	ppm		111111111111		111111111111111111111111111111111111111	mmi	II .	0 lbs Mg/1000sgft
Sulfur	30	(13)	ppm				11111111111	111111		0 lbs S/1000sqft
Sodium	122	(-)	ppm		111111111111	I				
ron								l		
linc							1			
Manganese							į			
Copper							i			
Boron										
imestone Requirement					•			·		0.00 lbs/1000sqft
CI -Critical layed is the point w	high no odd	itional nu	triant (avalue	lina nitrat	o N. 000	dium on	d oondu	otivity) i	o rocomi	mandad **nnm mg/kg

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533235
Customer Sample ID: 1557

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.7	(6.5)	-	Mod. Alkaline
Conductivity	508	(-)	umho/cm	Slight CL* Fertilizer Recommended
Nitrate-N	29	(-)	ppm**	
Phosphorus	451	(50)	ppm	
Potassium	921	(175)	ppm	
Calcium	8,183	(180)	ppm	
Magnesium	574	(50)	ppm	
Sulfur	59	(13)	ppm	
Sodium	166	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding witness N andique and conductivity is recommended **press parties

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533236
Customer Sample ID: 1558
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Nitrate-N	Crop Grown: G	ARDEN									
Conductivity	Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Nitrate-N	рН	7.6	(6.5)	-	Mod. Alka	line					
Phosphorus 239 (50) ppm	Conductivity	168	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Potassium 226 (175) ppm	Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Calcium 8,061 (180) ppm	Phosphorus	239	(50)	ppm					mmi	Ш	0 lbs P2O5/1000sqft
Magnesium 560 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Potassium	226	(175)	ppm				mmm	Ш		0 lbs K20/1000sqft
Sulfur 22 (13) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Calcium	8,061	(180)	ppm							0 lbs Ca/1000sqft
Sodium 28 (-) ppm IIIII	Magnesium	560	(50)	ppm					mmi	I .	0 lbs Mg/1000sgft
Iron Zinc Manganese Copper Boron	Sulfur	22	(13)	ppm	1111111111111111			11111111111	IIIII		0 lbs S/1000sqft
Manganese Copper Boron	Sodium	28	(-)	ppm	IIIIII						
Copper Boron	Iron							l			
Copper Boron	Zinc							ļ			
Boron	Manganese							i			
	Copper							i			
Limestone Requirement 0.00 lbs/1000sqft	Boron							I I			
	Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533237
Customer Sample ID: 1559
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Mod. Alkaline					
Conductivity	233	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	11111111111111111					0.8 lbs N/1000sqft
Phosphorus	287	(50)	ppm) 	11111111111	IIII	0 lbs P2O5/1000sqft
Potassium	219	(175)	ppm		1111111111		11		0 lbs K20/1000sqft
Calcium	9,817	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	779	(50)	ppm	111111111111111111111111111111111111111				II .	0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm	111111111111111111111111111111111111111	1111111111	,,,,,,,,,,,,,,,,	11111		0 lbs S/1000sqft
Sodium	40	(-)	ppm	1111111					
Iron									
Zinc									
Manganese						į			
Copper						;			
Boron									
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533238
Customer Sample ID: 1560
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	145	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	17	(-)	ppm**			Ш				0.6 lbs N/1000sqft
Phosphorus	128	(50)	ppm					11111111111	II	0 lbs P2O5/1000sqft
otassium	286	(175)	ppm	11111111111				111111		0 lbs K20/1000sqft
Calcium	6,973	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
/lagnesium	395	(50)	ppm					11111111111		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	111111111111				III		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II						
ron										
Zinc Zinc										
Manganese										
Copper										
Boron							I			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533239
Customer Sample ID: 1561
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alka	line					
Conductivity	175	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**		Ш					0.8 lbs N/1000sqft
Phosphorus	123	(50)	ppm	111111111111111	111111111			mmi	I	0 lbs P2O5/1000sqft
Potassium	378	(175)	ppm		ШШ					0 lbs K20/1000sqft
Calcium	7,189	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	436	(50)	ppm	111111111111111	ШШ			mmmi		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm					Ш		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
Iron							ľ			
Zinc										
Manganese							I			
Copper							i			
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533241
Customer Sample ID: 1562
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.1	(6.5)	-	Slightly A	cid					
Conductivity	164	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	40	(50)	ppm	111111111111111111111111111111111111111						0.7 lbs P2O5/1000sqft
Potassium	336	(175)	ppm		111111111			111111111		0 lbs K20/1000sqft
Calcium	6,443	(180)	ppm						I	0 lbs Ca/1000sqft
Magnesium	310	(50)	ppm		111111111			1111111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm	111111111111111111111111111111111111111				11111		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										30.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533242
Customer Sample ID: 1563
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	6.4	(6.5)	-	Slightly	Acid					
Conductivity	187	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
hosphorus	65	(50)	ppm	11111111111	111111111111		11111111111	11111		0 lbs P2O5/1000sqft
otassium	156	(175)	ppm	11111111111	111111111111		11111111111			0.4 lbs K20/1000sqft
Calcium	5,613	(180)	ppm	11111111111			: .			0 lbs Ca/1000sqft
Magnesium (1997)	420	(50)	ppm		111111111111				I	0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm		111111111111		11111111111	111		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
linc										
/langanese										
Copper										
Boron							ľ			
imestone Requirement										10.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533243
Customer Sample ID: 1564

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.5	(6.5)	-	Slightly A	cid					
Conductivity	1,133	(-)	umho/cm	Moderate			CL			Fertilizer Recommended
Nitrate-N	124	(-)	ppm**	111111111111			111111111111		Ш	0 lbs N/1000sqft
Phosphorus	394	(50)	ppm	1111111111111					111111	0 lbs P2O5/1000sqft
Potassium	182	(175)	ppm	111111111111				I		0 lbs K20/1000sqft
Calcium	7,123	(180)	ppm	1111111111111					II	0 lbs Ca/1000sqft
Magnesium	247	(50)	ppm					IIIII		0 lbs Mg/1000sgft
Sulfur	647	(13)	ppm	1111111111111					111111111111	0 lbs S/1000sqft
Sodium	39	(-)	ppm	1111111						
Iron										
Zinc										
Manganese							i			
Copper										
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft
21 0 % 11 11 11								\		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533244
Customer Sample ID: 1565
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.9	(6.5)	-	Slightly	Acid					
Conductivity	200	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	7	(-)	ppm**	111111						1.1 lbs N/1000sqft
Phosphorus	158	(50)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	humi	Ш	0 lbs P2O5/1000sqft
Potassium	203	(175)	ppm				•	ון וון		0 lbs K20/1000sqft
Calcium	14,673	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	514	(50)	ppm				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		II .	0 lbs Mg/1000sgft
Sulfur	39	(13)	ppm	11111111111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111		0 lbs S/1000sqft
Sodium	27	(-)	ppm	111111						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
CI. Critical lavel in the maint					- N - I					1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533245 Customer Sample ID: 1566 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
pΗ	7.1	(6.5)	-	Slightly	Alkaline					
Conductivity	292	(-)	umho/cm	None			CI	L*		Fertilizer Recommended
Nitrate-N	36	(-)	ppm**				IIIIII			0 lbs N/1000sqft
Phosphorus	102	(50)	ppm					111111111111111111111111111111111111111	II	0 lbs P2O5/1000sqft
Potassium	291	(175)	ppm	11111111111				111111		0 lbs K20/1000sqft
Calcium	11,626	(180)	ppm			: :				0 lbs Ca/1000sqft
Magnesium	368	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	31	(13)	ppm					1111111		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
ron								i		
Zinc								l		
Manganese										
Copper							i	i		
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533246 Customer Sample ID: 1567 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Mod. Alk	aline					
Conductivity	851	(-)	umho/cm	Slight			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	78	(50)	ppm	11111111111						0 lbs P2O5/1000sqft
Potassium	688	(175)	ppm	11111111111				ШШЩ	II .	0 lbs K20/1000sqft
Calcium	20,602	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	396	(50)	ppm	11111111111				11111111111		0 lbs Mg/1000sgft
Sulfur	284	(13)	ppm	11111111111			11111111111	<u>.</u>		0 lbs S/1000sqft
Sodium	249	(-)	ppm	11111111111		Ш				
ron										
Zinc										
Manganese							i			
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533247
Customer Sample ID: 1569
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow \	/Low	Low	Mod	High	VHigh	Excess.
Н	6.8	(6.5)	-	Slightly Aci	id					
Conductivity	2,387	(-)	umho/cm	V. High			CL			Fertilizer Recommended
Nitrate-N	243	(-)	ppm**		IIIIIII	IIIIIIIIII	11111111111		111111111111	0 lbs N/1000sqft
Phosphorus	229	(50)	ppm	111111111111111111111111111111111111111	11111111		mmi		Ш	0 lbs P2O5/1000sqft
Potassium	1767	(175)	ppm	111111111111111111111111111111111111111	mmi		manni (1111111111	Ш	0 lbs K20/1000sqft
Calcium	2,785	(180)	ppm	111111111111111111111111111111111111111	1111111			II		0 lbs Ca/1000sqft
Magnesium	514	(50)	ppm	111111111111111111111111111111111111111	11111111		mmini (11111111111	II	0 lbs Mg/1000sgft
Sulfur	34	(13)	ppm	111111111111111111111111111111111111111	IIIIIIIII			IIIIII		0 lbs S/1000sqft
Sodium	322	(-)	ppm		ШЩ	ШШ				
ron							¦			
Zinc							:			
V anganese							i			
Copper							i			
Boron							-			
Limestone Requirement										0.00 lbs/1000sqft
CL Oritical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533248
Customer Sample ID: 1570
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
оН	7.4	(6.5)	-	Slightly	Alkaline					
Conductivity	400	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**	11111111111		Ш				0.6 lbs N/1000sqft
Phosphorus	58	(50)	ppm	11111111111			111111111111	11		0 lbs P2O5/1000sqft
Potassium	497	(175)	ppm	11111111111				111111111111	I	0 lbs K20/1000sqft
Calcium	5,303	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	270	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	91	(13)	ppm	11111111111			11111111111	111111111111	111111	0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
ron										
Zinc										
Vlanganese										
Copper										
Boron							,			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533249
Customer Sample ID: 1571
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alkal	line					
Conductivity	139	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	37	(50)	ppm	111111111111111111111111111111111111111			IIII ¦			1 lbs P2O5/1000sqft
Potassium	221	(175)	ppm							0 lbs K20/1000sqft
Calcium	14,122	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	263	(50)	ppm					IIIIII		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm				mm	III		0 lbs S/1000sqft
Sodium	7	(-)	ppm	ı						
Iron							ļ.			
Zinc										
Manganese							I			
Copper							j			
Boron							ı			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533250
Customer Sample ID: 1572
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. All	kaline					
173	(-)	umho/cm	None			С	L*		Fertilizer Recommended
3	(-)	ppm**	I						1.3 lbs N/1000sqft
159	(50)	ppm				111111111111	ļumuļ	II	0 lbs P2O5/1000sqft
165	(175)	ppm		111111111111		111111111111			0.2 lbs K20/1000sqft
11,810	(180)	ppm						I	0 lbs Ca/1000sqft
364	(50)	ppm				111111111111	100000		0 lbs Mg/1000sgft
22	(13)	ppm				111111111111	11111		0 lbs S/1000sqft
11	(-)	ppm	II						
							i		
									0.00 lbs/1000sqft
	7.8 173 3 159 165 11,810 364 22	Results CL* 7.8 (6.5) 173 (-) 3 (-) 159 (50) 165 (175) 11,810 (180) 364 (50) 22 (13)	Results CL* Units 7.8 (6.5) - 173 (-) umho/cm 3 (-) ppm** 159 (50) ppm 165 (175) ppm 11,810 (180) ppm 364 (50) ppm 22 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. All 173 (-) umho/cm None 3 (-) ppm*** I 159 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 173 (-) umho/cm None 3 (-) ppm*** 159 (50) ppm	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 173 (-) umho/cm None - 3 (-) ppm*** I - 159 (50) ppm	Results CL* Units ExLow VLow Low Mod 7.8 (6.5) - Mod. Alkaline -	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533251 Customer Sample ID: 1574 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	198	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	38	(-)	ppm**		11111111111		IIIIII			0 lbs N/1000sqft
Phosphorus	86	(50)	ppm					11111111111		0 lbs P2O5/1000sqft
Potassium	277	(175)	ppm	111111111111	11111111111			111111		0 lbs K20/1000sqft
Calcium	9,140	(180)	ppm					(111111111111	II	0 lbs Ca/1000sqft
Magnesium	259	(50)	ppm		11111111111			111111		0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm	111111111111	11111111111			111		0 lbs S/1000sqft
Sodium	6	(-)	ppm	ı						
ron										
Zinc								l		
Vlanganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533252 Customer Sample ID: 1575 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
θH	7.7	(6.5)	-	Mod. All	kaline					
Conductivity	822	(-)	umho/cm	Slight			. CI	<u>.</u>		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	3	(50)	ppm	IIIIIII				 		3.7 lbs P2O5/1000sqft
Potassium	249	(175)	ppm		111111111111	IIIIIIIIIII	11111111111)III		0 lbs K20/1000sqft
Calcium	34,015	(180)	ppm	11111111111	111111111111		111111111111	(((((((((((((((((((((((((((((((((((((((II	0 lbs Ca/1000sqft
/lagnesium	397	(50)	ppm		111111111111	IIIIIIIIII	111111111111			0 lbs Mg/1000sgft
Sulfur	524	(13)	ppm	11111111111			11111111111	111111111111111111111111111111111111111	111111111111	0 lbs S/1000sqft
Sodium	47	(-)	ppm	1111111111						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement				·						0.00 lbs/1000sqft
Cl. Critical laval in the paint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533253
Customer Sample ID: 1576
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	134	(-)	umho/cm	None			CI	<u>.</u> *		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**			I				0.6 lbs N/1000sqft
Phosphorus	128	(50)	ppm						I	0 lbs P2O5/1000sqft
Potassium	208	(175)	ppm	11111111111				11		0 lbs K20/1000sqft
Calcium	13,675	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	447	(50)	ppm						l	0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
lron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement								·		0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533254
Customer Sample ID: 1577

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	352	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	6	(-)	ppm**	IIIIII						1.1 lbs N/1000sqft
Phosphorus	267	(50)	ppm				шшц	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Ш	0 lbs P2O5/1000sqft
Potassium	637	(175)	ppm	11111111111		11111111111	11111111111	mmi	II .	0 lbs K20/1000sqft
Calcium	7,928	(180)	ppm				11111111111			0 lbs Ca/1000sqft
Magnesium	404	(50)	ppm		11111111111		1111111111	mmi	ı	0 lbs Mg/1000sgft
Sulfur	195	(13)	ppm		11111111111		11111111111	HHHHHİ		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron							ļ			
Zinc							ļ			
Manganese							i			
Copper							i			
Boron							!			
Limestone Requirement										0.00 lbs/1000sqft
01 0 0 11 11 11 11	111				- N.I.					1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533255
Customer Sample ID: 1578
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. All	kaline					
168	(-)	umho/cm	None			С	L*		Fertilizer Recommended
0	(-)	ppm**							1.4 lbs N/1000sqft
168	(50)	ppm				111111111111		II	0 lbs P2O5/1000sqft
261	(175)	ppm				111111111111	11111		0 lbs K20/1000sqft
8,436	(180)	ppm						I	0 lbs Ca/1000sqft
317	(50)	ppm		111111111111		111111111111	1000		0 lbs Mg/1000sgft
20	(13)	ppm		111111111111		111111111111	11111		0 lbs S/1000sqft
8	(-)	ppm	ı						
							l		
									0.00 lbs/1000sqft
	7.8 168 0 168 261 8,436 317 20	Results CL* 7.8 (6.5) 168 (-) 0 (-) 168 (50) 261 (175) 8,436 (180) 317 (50) 20 (13)	Results CL* Units 7.8 (6.5) - 168 (-) umho/cm 0 (-) ppm** 168 (50) ppm 261 (175) ppm 8,436 (180) ppm 317 (50) ppm 20 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. All 168 (-) umho/cm None 0 (-) ppm** - 168 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 168 (-) umho/cm None 0 (-) ppm** 168 (50) ppm 261 (175) ppm 8,436 (180) ppm 317 (50) ppm 10 (13) ppm 111111111111111111111111111111111111	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 168 (-) umho/cm None - 0 (-) ppm*** 168 (50) ppm	Results CL* Units ExLow VLow Low Mod 7.8 (6.5) - Mod. Alkaline -	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533256
Customer Sample ID: 1579
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alka	aline					
Conductivity	231	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**			Ш				0.5 lbs N/1000sqft
Phosphorus	99	(50)	ppm						l	0 lbs P2O5/1000sqft
Potassium	285	(175)	ppm		11111111111			111111		0 lbs K20/1000sqft
Calcium	14,960	(180)	ppm		:					0 lbs Ca/1000sqft
Magnesium	478	(50)	ppm					mmi	l	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm					111111111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
Iron										
Zinc										
Manganese							ı			
Copper							i			
Boron							ŀ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533257
Customer Sample ID: 1580
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Results 7.6	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.6	(O E)				LOW	Mod	nigii	vnigh	Excess.
	(6.5)	-	Mod. Al	kaline					
308	(-)	umho/cm	None			CI	*		Fertilizer Recommended
7	(-)	ppm**	ШШ						1.1 lbs N/1000sqft
161	(50)	ppm	11111111111			111111111111	11111111111	III	0 lbs P2O5/1000sqft
185	(175)	ppm	1111111111	11111111111		111111111111)		0 lbs K20/1000sqft
6,811	(180)	ppm						II	0 lbs Ca/1000sqft
284	(50)	ppm	1111111111			111111111111	111111		0 lbs Mg/1000sgft
82	(13)	ppm	1111111111	11111111111		111111111111	11111111111	IIII	0 lbs S/1000sqft
16	(-)	ppm	Ш						
						i			
									0.00 lbs/1000sqft
	7 161 185 6,811 284 82 16	7 (-) 161 (50) 185 (175) 6,811 (180) 284 (50) 82 (13) 16 (-)	7 (-) ppm** 161 (50) ppm 185 (175) ppm 6,811 (180) ppm 284 (50) ppm 82 (13) ppm 16 (-) ppm	7 (-) ppm**	7 (-) ppm** IIIII 161 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	7 (-) ppm**	7 (-) ppm** IIIII 161 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	7 (-) ppm**	7 (-) ppm**

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533258
Customer Sample ID: 1581
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alk	caline					
Conductivity	205	(-)	umho/cm	None			С	<u>.</u> *		Fertilizer Recommended
Nitrate-N	26	(-)	ppm**	11111111111		: :				0.1 lbs N/1000sqft
Phosphorus	181	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	260	(175)	ppm							0 lbs K20/1000sqft
Calcium	6,035	(180)	ppm	11111111111		: :				0 lbs Ca/1000sqft
Magnesium	273	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm	11111111111				11111		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
Iron								l I		
Zinc								l I		
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
*CL Critical lawal in the maintu										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533259
Customer Sample ID: 1584
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VI	ow Lov	/ Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. Alkalin	е				
Conductivity	191	(-)	umho/cm	None			CL*		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**		шш				0.6 lbs N/1000sqft
Phosphorus	76	(50)	ppm		11111111111111	1111111111111	ıķııııı		0 lbs P2O5/1000sqft
Potassium	310	(175)	ppm		шиш	Щини	ığınını		0 lbs K20/1000sqft
Calcium	6,960	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	403	(50)	ppm		шш	Шини	I Å I I I I I I I I I I	(I	0 lbs Mg/1000sgft
Sulfur	16	(13)	ppm		11111	111111111111111111111111111111111111111	ıķı		0 lbs S/1000sqft
Sodium	27	(-)	ppm	IIIIII					
Iron							i		
Zinc							1		
Manganese							į		
Copper							i		
Boron							¦		
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533260
Customer Sample ID: 1585
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLov	v Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	256	(-)	umho/cm	None		CI	*		Fertilizer Recommended
Nitrate-N	14	(-)	ppm**	111111111111111111111111111111111111111					0.8 lbs N/1000sqft
Phosphorus	281	(50)	ppm		Шини	ļiiiiiiiii	11111111111	Ш	0 lbs P2O5/1000sqft
Potassium	330	(175)	ppm		111111111111	•	1111111		0 lbs K20/1000sqft
Calcium	10,970	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	459	(50)	ppm		ШШШ	•		l	0 lbs Mg/1000sgft
Sulfur	28	(13)	ppm		111111111111	111111111111111111111111111111111111111	111111		0 lbs S/1000sqft
Sodium	16	(-)	ppm	III					
Iron									
Zinc									
Manganese									
Copper									
Boron									
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533261
Customer Sample ID: 1587
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	7.8	(6.5)	-	Mod. Alkaline
Conductivity	94	(-)	umho/cm	None CL* Fertilizer Recommended
Nitrate-N	4	(-)	ppm**	III 1.2 lbs N/1000sqft
Phosphorus	185	(50)	ppm	
Potassium	210	(175)	ppm	
Calcium	5,353	(180)	ppm	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Magnesium	280	(50)	ppm	
Sulfur	17	(13)	ppm	
Sodium	7	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding pitrate N and improved and apply stigits) in recommended **prop page.

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533262 Customer Sample ID: 1589 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
oH .	8.1	(6.5)	-	Mod. Alk	aline					
Conductivity	201	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**	11111111111		IIIIII				0.4 lbs N/1000sqft
Phosphorus	78	(50)	ppm	11111111111				1111111		0 lbs P2O5/1000sqft
Potassium	122	(175)	ppm	11111111111			Ш			1.2 lbs K20/1000sqft
Calcium	23,141	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	645	(50)	ppm	11111111111					II	0 lbs Mg/1000sgft
Sulfur	56	(13)	ppm	11111111111				11111111111	II	0 lbs S/1000sqft
Sodium	34	(-)	ppm	IIIIIII						
ron										
Zinc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533263
Customer Sample ID: 1590
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		O								
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.1	(6.5)	-	Mod. Alk	kaline					
Conductivity	84	(-)	umho/cm	None			CL	*		Fertilizer Recommended
litrate-N	8	(-)	ppm**	IIIIIII						1.1 lbs N/1000sqft
Phosphorus	53	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	219	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	21,374	(180)	ppm						II	0 lbs Ca/1000sqft
/lagnesium	294	(50)	ppm			IIIIIIIIII		IIIIII		0 lbs Mg/1000sgft
Sulfur	26	(13)	ppm			IIIIIIIIII	11111111111	IIIIII		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II						
ron										
linc										
Manganese							i			
Copper							i			
Boron							ŀ			
imestone Requirement										0.00 lbs/1000sqft
Cl. Critical layed in the maint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533264
Customer Sample ID: 1591

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.0	(6.5)	-	Neutral						
Conductivity	214	(-)	umho/cm	None			CL	,		Fertilizer Recommended
Nitrate-N	33	(-)	ppm**			11111111111	11111			0 lbs N/1000sqft
Phosphorus	76	(50)	ppm				шин	IIIIII		0 lbs P2O5/1000sqft
Potassium	194	(175)	ppm				111111111111111111111111111111111111111			0 lbs K20/1000sqft
Calcium	3,850	(180)	ppm	11111111111			HIIIIIIII	II		0 lbs Ca/1000sqft
Magnesium	450	(50)	ppm				######################################		l	0 lbs Mg/1000sgft
Sulfur	9	(13)	ppm				11111			0.25 lbs S/1000sqft
Sodium	14	(-)	ppm	ll l						
Iron										
Zinc							-			
Manganese							į			
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533265
Customer Sample ID: 1592
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.7	(6.5)	-	Mod. All	kaline					
137	(-)	umho/cm	None			CI	*		Fertilizer Recommended
6	(-)	ppm**	IIII						1.2 lbs N/1000sqft
184	(50)	ppm				111111111111		III	0 lbs P2O5/1000sqft
258	(175)	ppm				111111111111	וווון		0 lbs K20/1000sqft
5,510	(180)	ppm							0 lbs Ca/1000sqft
205	(50)	ppm					11111		0 lbs Mg/1000sgft
17	(13)	ppm					111		0 lbs S/1000sqft
4	(-)	ppm							
						i			
									0.00 lbs/1000sqft
	7.7 137 6 184 258 5,510 205	Results CL* 7.7 (6.5) 137 (-) 6 (-) 184 (50) 258 (175) 5,510 (180) 205 (50) 17 (13)	Results CL* Units 7.7 (6.5) - 137 (-) umho/cm 6 (-) ppm** 184 (50) ppm 258 (175) ppm 5,510 (180) ppm 205 (50) ppm 17 (13) ppm	Results CL* Units ExLow 7.7 (6.5) - Mod. All 137 (-) umho/cm None 6 (-) ppm** IIII 184 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.7 (6.5) - Mod. Alkaline 137 (-) umho/cm None 6 (-) ppm** IIII 184 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low 7.7 (6.5) - Mod. Alkaline - 137 (-) umho/cm None - 6 (-) ppm*** IIII - 184 (50) ppm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533266
Customer Sample ID: 1593

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	8.2	(6.5)	-	Mod. Alkaline
Conductivity	732	(-)	umho/cm	Slight CL* Fertilizer Recommended
Nitrate-N	59	(-)	ppm**	
Phosphorus	649	(50)	ppm	
Potassium	2088	(175)	ppm	
Calcium	17,556	(180)	ppm	
Magnesium	909	(50)	ppm	
Sulfur	90	(13)	ppm	
Sodium	450	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft
				ding nitrate N codium and conductivity is recommended **page may/re

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533267 Customer Sample ID: 1594

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.8	(6.5)	-	Mod. All	kaline					
Conductivity	239	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	115	(50)	ppm		1111111111111		111111111111	ļuunuķi	ı	0 lbs P2O5/1000sqft
Potassium	515	(175)	ppm		111111111111		111111111111	ļimminiķi		0 lbs K20/1000sqft
Calcium	14,883	(180)	ppm					innundi	ı	0 lbs Ca/1000sqft
Magnesium	373	(50)	ppm	11111111111	111111111111		111111111111			0 lbs Mg/1000sgft
Sulfur	9	(13)	ppm				11111			0.25 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
Iron										
Zinc								!		
Manganese										
Copper								i		
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533268
Customer Sample ID: 1595
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
θH	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	185	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	15	(-)	ppm**	11111111111						0.7 lbs N/1000sqft
Phosphorus	172	(50)	ppm	11111111111			шин		Ш	0 lbs P2O5/1000sqft
Potassium	191	(175)	ppm	11111111111			mmn	ı		0 lbs K20/1000sqft
Calcium	10,156	(180)	ppm	11111111111					II	0 lbs Ca/1000sqft
Magnesium	430	(50)	ppm	11111111111			111111111111111111111111111111111111111	HHHHH	l l	0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm	11111111111			1111111111 1			0 lbs S/1000sqft
Sodium	23	(-)	ppm	Ш						
ron							1			
Zinc							!			
Manganese							į			
Copper							i			
Boron										
imestone Requirement								•	•	0.00 lbs/1000sqft
CL -Critical layed is the point w								\ ·		1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533269
Customer Sample ID: 1596

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.4	(6.5)	-	Slightly Alkaline)				
Conductivity	386	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	36	(-)	ppm**	111111111111111111111111111111111111111		111111			0 lbs N/1000sqft
Phosphorus	349	(50)	ppm			111111111111111111111111111111111111111		IIIIII	0 lbs P2O5/1000sqft
Potassium	346	(175)	ppm			inning.			0 lbs K20/1000sqft
Calcium	7,747	(180)	ppm	1111111111					0 lbs Ca/1000sqft
Magnesium	521	(50)	ppm			,,,,,,,,,,,,,		II .	0 lbs Mg/1000sgft
Sulfur	37	(13)	ppm	1111111111					0 lbs S/1000sqft
Sodium	27	(-)	ppm	111111					
Iron						i i			
Zinc									
Manganese						į			
Copper						i			
Boron						!			
Limestone Requirement									0.00 lbs/1000sqft
N 0 ''' 11 1' '' '				'			\ ·		1 1 ++ //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533271 Customer Sample ID: 1597 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	139	(-)	umho/cm	None			CI	*		Fertilizer Recommended
litrate-N	10	(-)	ppm**	11111111111						0.9 lbs N/1000sqft
hosphorus	11	(50)	ppm	111111111111						3.1 lbs P2O5/1000sqft
otassium	268	(175)	ppm	11111111111			111111111111	וווון		0 lbs K20/1000sqft
Calcium	13,747	(180)	ppm	11111111111	:		:		II	0 lbs Ca/1000sqft
Magnesium (268	(50)	ppm					111111		0 lbs Mg/1000sgft
Sulfur	24	(13)	ppm					11111		0 lbs S/1000sqft
Sodium	30	(-)	ppm	1111111						
ron										
linc										
/langanese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533272
Customer Sample ID: 1599
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VL	ow Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alkaline					
Conductivity	251	(-)	umho/cm	None		. (CL*		Fertilizer Recommended
Nitrate-N	18	(-)	ppm**		ШШ				0.6 lbs N/1000sqft
Phosphorus	714	(50)	ppm		111111111111	Щинин	(41111111111		0 lbs P2O5/1000sqft
Potassium	270	(175)	ppm		Щини	фини	ı ğ ıllı		0 lbs K20/1000sqft
Calcium	14,470	(180)	ppm	111111111111111111111111111111111111111					0 lbs Ca/1000sqft
Magnesium	833	(50)	ppm		шшшш	Щинин	ı (illi illi illi	II	0 lbs Mg/1000sgft
Sulfur	36	(13)	ppm		Ш	10)1111111111	1011111111		0 lbs S/1000sqft
Sodium	33	(-)	ppm	1111111					
Iron							¦		
Zinc							1		
Manganese							į		
Copper							i		
Boron							1		
Limestone Requirement									0.00 lbs/1000sqft
21 0 22 11 12 41 2 4									1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533273
Customer Sample ID: 1600
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
H	7.9	(6.5)	-	Mod. Alk	aline					
Conductivity	157	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	16	(-)	ppm**	11111111111	ШШШ					0.7 lbs N/1000sqft
Phosphorus	83	(50)	ppm	11111111111	111111111111		111111111111	111111111		0 lbs P2O5/1000sqft
Potassium	280	(175)	ppm	11111111111	ШШШ		111111111111	111111		0 lbs K20/1000sqft
Calcium	16,441	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	384	(50)	ppm				111111111111			0 lbs Mg/1000sgft
Sulfur	32	(13)	ppm	11111111111				1111111		0 lbs S/1000sqft
Sodium	12	(-)	ppm	ll l						
ron										
Zinc								l		
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533274
Customer Sample ID: 1604
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G										
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.6	(6.5)	-	Slightly	Alkaline					
Conductivity	230	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	232	(50)	ppm				111111111111111111111111111111111111111		Ш	0 lbs P2O5/1000sqft
Potassium	270	(175)	ppm		111111111111		11111111111	11111		0 lbs K20/1000sqft
Calcium	11,087	(180)	ppm					(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
Magnesium	496	(50)	ppm		111111111111					0 lbs Mg/1000sgft
Sulfur	33	(13)	ppm	11111111111			111111111111	1111111		0 lbs S/1000sqft
Sodium	15	(-)	ppm	III						
ron										
Zinc										
Vlanganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533275
Customer Sample ID: 1606
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		O1 #								
nalysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	298	(-)	umho/cm	None			. CI	*		Fertilizer Recommended
Nitrate-N	21	(-)	ppm**							0.4 lbs N/1000sqft
Phosphorus	106	(50)	ppm						I	0 lbs P2O5/1000sqft
Potassium	249	(175)	ppm		11111111111		11111111111)11		0 lbs K20/1000sqft
Calcium	21,532	(180)	ppm		11111111111		11111111111	(11111111111111111111111111111111111111	I	0 lbs Ca/1000sqft
//agnesium	380	(50)	ppm							0 lbs Mg/1000sgft
Sulfur	45	(13)	ppm	111111111111			11111111111	11111111111	l	0 lbs S/1000sqft
Sodium	10	(-)	ppm	ı						
ron										
linc										
Manganese										
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
•										·
Cl. Critical lavel is the paint w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533276
Customer Sample ID: 1607
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN						
Analysis	Results	CL*	Units	ExLow VLow Low	Mod High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkaline			
Conductivity	408	(-)	umho/cm	None	CL*		Fertilizer Recommended
Nitrate-N	67	(-)	ppm**				0 lbs N/1000sqft
Phosphorus	339	(50)	ppm			Ш	0 lbs P2O5/1000sqft
Potassium	647	(175)	ppm				0 lbs K20/1000sqft
Calcium	17,211	(180)	ppm				0 lbs Ca/1000sqft
Magnesium	730	(50)	ppm				0 lbs Mg/1000sgft
Sulfur	44	(13)	ppm				0 lbs S/1000sqft
Sodium	22	(-)	ppm	IIII			
Iron							
Zinc							
Manganese							
Copper							
Boron					-		
Limestone Requirement							0.00 lbs/1000sqft
CI -Critical level is the point w	hich no add	itional nu	triant (avalue	ing pitrate N. sodium a	nd conductivity) ic	rocomm	andad **nnm ma/ka

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533277
Customer Sample ID: 1608
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
ρΗ	7.8	(6.5)	-	Mod. Alk	caline					
Conductivity	184	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	96	(50)	ppm	11111111111	111111111111		11111111111	11111111111	l	0 lbs P2O5/1000sqft
Potassium	202	(175)	ppm		1111111111111		11111111111)		0 lbs K20/1000sqft
Calcium	9,878	(180)	ppm	11111111111		!	: .		II	0 lbs Ca/1000sqft
Magnesium	304	(50)	ppm		111111111111			1111111		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm		111111111111		11111111111	111111		0 lbs S/1000sqft
Sodium	11	(-)	ppm	II						
ron										
Zinc										
Manganese										
Copper										
Boron							ľ			
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533278
Customer Sample ID: 1609
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.1	(6.5)	-	Mod. Al	kaline					
Conductivity	121	(-)	umho/cm	None			CL			Fertilizer Recommended
Nitrate-N	2	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	21	(50)	ppm	1111111111	111111111111)	l		2.2 lbs P2O5/1000sqft
Potassium	193	(175)	ppm		111111111111)		0 lbs K20/1000sqft
Calcium	12,490	(180)	ppm	1111111111					II	0 lbs Ca/1000sqft
Magnesium	351	(50)	ppm	1111111111				111111111		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm	1111111111	111111111111		!!!!!!!!!!!	Ш		0 lbs S/1000sqft
Sodium	13	(-)	ppm	II						
Iron								l		
Zinc										
Manganese							ļ			
Copper							i			
Boron							ŀ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533279
Customer Sample ID: 1610
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.6	(6.5)	-	Mod. All	kaline					
Conductivity	221	(-)	umho/cm	None			С	L*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**		Ш					0.8 lbs N/1000sqft
Phosphorus	187	(50)	ppm						Ш	0 lbs P2O5/1000sqft
Potassium	368	(175)	ppm	11111111111						0 lbs K20/1000sqft
Calcium	6,680	(180)	ppm			•	:		II	0 lbs Ca/1000sqft
Magnesium	336	(50)	ppm	11111111111			:			0 lbs Mg/1000sgft
Sulfur	19	(13)	ppm	11111111111				111		0 lbs S/1000sqft
Sodium	6	(-)	ppm	I						
Iron										
Zinc										
Manganese										
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft
*01 0 % 11 11 11	1.1.1	er t								1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533280
Customer Sample ID: 1611
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Nitrate-N Phosphorus 1 Potassium Calcium 5	7.4 438 20 ,137 732 ,600	(6.5) (-) (-) (50) (175)	Units - umho/cm ppm** ppm	Slightly None			Mod	High	VHigh	Fertilizer Recommended
Conductivity Nitrate-N Phosphorus 1 Potassium Calcium 5 Magnesium 1 Sulfur Sodium Iron Zinc	438 20 ,137 732 ,600	(-) (-) (50)	umho/cm ppm**	None			С			Fertilizer Recommended
Nitrate-N Phosphorus 1 Potassium Calcium 5 Magnesium 1 Sulfur Sodium Iron Zinc	20 ,137 732 ,600	(-) (50)	ppm**				С			Fertilizer Recommended
Phosphorus 1. Potassium Calcium 5. Magnesium 1. Sulfur Sodium Iron Zinc	,137 <mark>732</mark> ,600	(50)						<u> </u>		i citiliza inccommenda
Potassium Calcium 5, Magnesium 1, Sulfur Sodium Iron Zinc	732 ,600		ppm			Ш				0.4 lbs N/1000sqft
Calcium 5 Magnesium 1 Sulfur Sodium Iron Zinc	,600	(175)						;		0 lbs P2O5/1000sqft
Magnesium 1 Sulfur Sodium Iron Zinc			ppm	11111111111			11111111111	ļumumi	II .	0 lbs K20/1000sqft
Sulfur S <mark>odium</mark> Iron <mark>Zinc</mark>	4 4 5	(180)	ppm	111111111111						0 lbs Ca/1000sqft
Sodium Iron Zinc	,145	(50)	ppm	111111111111				ļumini	Ш	0 lbs Mg/1000sgft
Iron Zinc	51	(13)	ppm	11111111111			1111111111		II .	0 lbs S/1000sqft
Zinc	117	(-)	ppm	111111111111		I				
								¦		
Manganese								!		
Copper										
Boron										
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533281
Customer Sample ID: 1612
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alkaline					
Conductivity	174	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	23	(-)	ppm**		IIIIII				0.3 lbs N/1000sqft
Phosphorus	23	(50)	ppm			ı ¦			2.1 lbs P2O5/1000sqft
Potassium	208	(175)	ppm		1111111111	mmmt	II		0 lbs K20/1000sqft
Calcium	28,347	(180)	ppm					II	0 lbs Ca/1000sqft
Magnesium	226	(50)	ppm				Ш		0 lbs Mg/1000sgft
Sulfur	25	(13)	ppm			шшш	11111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	III					
Iron									
Zinc									
Manganese						į			
Copper						i			
Boron						! !			
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533282
Customer Sample ID: 1613
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.3	(6.5)	-	Slightly	Alkaline					
Conductivity	510	(-)	umho/cm	Slight			CI			Fertilizer Recommended
Nitrate-N	91	(-)	ppm**					111111111111111111111111111111111111111		0 lbs N/1000sqft
Phosphorus	197	(50)	ppm				111111111111		II	0 lbs P2O5/1000sqft
Potassium	520	(175)	ppm	11111111111			111111111111	i)mmmi		0 lbs K20/1000sqft
Calcium	7,554	(180)	ppm					(11111111111111111111111111111111111111		0 lbs Ca/1000sqft
Magnesium	566	(50)	ppm				111111111111	mmmi	ı	0 lbs Mg/1000sgft
Sulfur	27	(13)	ppm				111111111111	111111		0 lbs S/1000sqft
Sodium	25	(-)	ppm	Ш						
Iron										
Zinc										
Manganese							ĺ			
Copper							i			
Boron							ľ			
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical level is the point w		100			N.I.	i.				1 1 44 //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533283
Customer Sample ID: 1614
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	109	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	1	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	5	(50)	ppm	1111111111						3.6 lbs P2O5/1000sqft
Potassium	342	(175)	ppm	11111111111				1111111111		0 lbs K20/1000sqft
Calcium	15,194	(180)	ppm	11111111111			11111111111	(11111111111111111111111111111111111111	I	0 lbs Ca/1000sqft
/lagnesium	132	(50)	ppm	11111111111		IIIIIIIIII		Ш		0 lbs Mg/1000sgft
Sulfur	8	(13)	ppm	11111111111						0.25 lbs S/1000sqft
Sodium	2	(-)	ppm							
ron										
linc										
/langanese							i			
Copper										
Boron										
imestone Requirement										0.00 lbs/1000sqft
CL -Critical level is the point w	high no add	itional nu	triant (avalue	lina nitroto	N acc	lium on	d condu	otivity) i	rocomi	non and ad **none may/ke

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533284 Customer Sample ID: 1615 Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
эН	7.8	(6.5)	-	Mod. Alk	aline					
Conductivity	144	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	8	(-)	ppm**	11111111						1 lbs N/1000sqft
Phosphorus	34	(50)	ppm	11111111111		IIIIIIIIII	IIIII			1.2 lbs P2O5/1000sqft
Potassium	239	(175)	ppm	11111111111		IIIIIIIIII		ווון		0 lbs K20/1000sqft
Calcium	7,138	(180)	ppm	11111111111						0 lbs Ca/1000sqft
Magnesium	421	(50)	ppm			IIIIIIIIII			I	0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm	11111111111		IIIIIIIIII		111		0 lbs S/1000sqft
Sodium	17	(-)	ppm	Ш						
ron										
Zinc										
Manganese										
Copper							i			
Boron										
imestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533285
Customer Sample ID: 1616
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	F					Var.	F
				ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.4	(6.5)	-	• •	Alkaline					
Conductivity	296	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	64	(50)	ppm							0 lbs P2O5/1000sqft
Potassium	351	(175)	ppm		111111111111					0 lbs K20/1000sqft
Calcium	6,024	(180)	ppm							0 lbs Ca/1000sqft
Magnesium	341	(50)	ppm				111111111111	111111111		0 lbs Mg/1000sgft
Sulfur	17	(13)	ppm		111111111111		11111111111	11		0 lbs S/1000sqft
Sodium	18	(-)	ppm	Ш						
ron										
Zinc										
Manganese							i			
Copper							l			
Boron										
imestone Requirement										0.00 lbs/1000sqft
-										<u> </u>
Cl. Critical lavel is the paint w							_			

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533286
Customer Sample ID: 1619
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. All	kaline					
Conductivity	156	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	10	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	32	(50)	ppm				Ш	İ		1.4 lbs P2O5/1000sqft
Potassium	236	(175)	ppm				11111111111	III 📗		0 lbs K20/1000sqft
Calcium	6,891	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	317	(50)	ppm					1111111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm				1111111			0.25 lbs S/1000sqft
Sodium	9	(-)	ppm	ı						
Iron										
Zinc										
Manganese										
Copper										
Boron							· ·			
Limestone Requirement										0.00 lbs/1000sqft
										1 1 ** //

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533287
Customer Sample ID: 1620
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN			
Analysis	Results	CL*	Units	ExLow VLow Low Mod High VHigh Excess.
рН	6.9	(6.5)	-	Slightly Acid
Conductivity	344	(-)	umho/cm	None CL. Fertilizer Recommended
Nitrate-N	34	(-)	ppm**	
Phosphorus	120	(50)	ppm	
Potassium	96	(175)	ppm	
Calcium	4,322	(180)	ppm	
Magnesium	449	(50)	ppm	
Sulfur	30	(13)	ppm	
Sodium	7	(-)	ppm	
Iron				
Zinc				
Manganese				
Copper				
Boron				
Limestone Requirement				0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533288 Customer Sample ID: 1622

Soil Analysis Report

Soil, Water and Forage Testing Laboratory **Department of Soil and Crop Sciences 2478 TAMU**

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019 Printed on: 5/7/2019 Area Represented: not provided

Crop Grown: G Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
Н	7.9	(6.5)	-	Mod. Alk				g		
Conductivity	174	(-)	umho/cm	None			CI			Fertilizer Recommended
Nitrate-N	13	(-)	ppm**	1111111111	IIII					0.8 lbs N/1000sqft
Phosphorus	47	(50)	ppm			1111111111				0.2 lbs P2O5/1000sqft
Potassium	244	(175)	ppm			1111111111		111		0 lbs K20/1000sqft
Calcium	6,320	(180)	ppm	11111111111				. :		0 lbs Ca/1000sqft
Magnesium	311	(50)	ppm			1111111111		1111111		0 lbs Mg/1000sgft
Sulfur	10	(13)	ppm	11111111111		1111111111	1111111			0.25 lbs S/1000sqft
Sodium	12	(-)	ppm	ll l						
lron										
Zinc								!		
Manganese										
Copper							i			
Boron										
Limestone Requirement										0.00 lbs/1000sqft

'CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533289
Customer Sample ID: 1625
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.9	(6.5)	-	Mod. Alk	caline					
Conductivity	177	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	3	(-)	ppm**	ı						1.3 lbs N/1000sqft
Phosphorus	9	(50)	ppm	111111111111			ı			3.2 lbs P2O5/1000sqft
Potassium	196	(175)	ppm					l		0 lbs K20/1000sqft
Calcium	10,045	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	379	(50)	ppm		111111111111	IIIIIIIIII				0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm	11111111111	111111111111		шшш	l		0 lbs S/1000sqft
Sodium	12	(-)	ppm	II .						
Iron							i			
Zinc							ļ			
Manganese							i			
Copper							i			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533290
Customer Sample ID: 1626
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ANDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	8.0	(6.5)	-	Mod. Alk	aline					
Conductivity	357	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**		1111111111	III				0.5 lbs N/1000sqft
Phosphorus	16	(50)	ppm			IIIIII				2.7 lbs P2O5/1000sqft
Potassium	361	(175)	ppm	111111111111				11111111111		0 lbs K20/1000sqft
Calcium	13,598	(180)	ppm	1111111111111	1111111111			(111111111111	II	0 lbs Ca/1000sqft
Magnesium	213	(50)	ppm		11111111111			Ш		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm					11111		0 lbs S/1000sqft
Sodium	123	(-)	ppm		1111111111	ı				
Iron										
Zinc										
Manganese							i			
Copper										
Boron							I			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533291
Customer Sample ID: 1628
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G		CI *	l luite							_
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alk	aline					
Conductivity	158	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	9	(-)	ppm**	1111111111						1 lbs N/1000sqft
Phosphorus	9	(50)	ppm							3.2 lbs P2O5/1000sqft
Potassium	173	(175)	ppm							0 lbs K20/1000sqft
Calcium	9,831	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	354	(50)	ppm				,,,,,,,,,,,,,,,			0 lbs Mg/1000sgft
Sulfur	11	(13)	ppm	111111111111						0.25 lbs S/1000sqft
Sodium	15	(-)	ppm	II						
lron										
Zinc										
Manganese							i			
Copper							l			
Boron							ļ			
Limestone Requirement										0.00 lbs/1000sqft
CI -Critical layal is the point w										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Sulfur: Available sulfur may be found deeper in soil profile, thus limiting any response to added sulfur.

Travis County

Laboratory Number: 533292
Customer Sample ID: 1629
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	AKDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alka	line					
Conductivity	215	(-)	umho/cm	None			CL	*		Fertilizer Recommended
Nitrate-N	0	(-)	ppm**							1.4 lbs N/1000sqft
Phosphorus	25	(50)	ppm				ı ;			1.9 lbs P2O5/1000sqft
Potassium	214	(175)	ppm	111111111111111111111111111111111111111						0 lbs K20/1000sqft
Calcium	7,618	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	159	(50)	ppm					Ш		0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm				mm	III		0 lbs S/1000sqft
Sodium	8	(-)	ppm	1						
Iron							i			
Zinc							-			
Manganese							!			
Copper							į			
Boron							· · · · · · · · · ·			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533293
Customer Sample ID: 1631
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

ARDEN									
Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
7.8	(6.5)	-	Mod. Alk	aline					
243	(-)	umho/cm	None			CL	*		Fertilizer Recommended
16	(-)	ppm**							0.7 lbs N/1000sqft
13	(50)	ppm			Ш	ı			2.9 lbs P2O5/1000sqft
280	(175)	ppm	11111111111				111111		0 lbs K20/1000sqft
8,134	(180)	ppm							0 lbs Ca/1000sqft
531	(50)	ppm					HHHHH	II	0 lbs Mg/1000sgft
16	(13)	ppm	111111111111			шшш	II .		0 lbs S/1000sqft
15	(-)	ppm	II						
						ļ	İ		
						ļ			
						į			
						i			
						I I			
									0.00 lbs/1000sqft
	7.8 243 16 13 280 8,134 531 16	Results CL* 7.8 (6.5) 243 (-) 16 (-) 13 (50) 280 (175) 8,134 (180) 531 (50) 16 (13)	Results CL* Units 7.8 (6.5) - 243 (-) umho/cm 16 (-) ppm** 13 (50) ppm 280 (175) ppm 8,134 (180) ppm 531 (50) ppm 16 (13) ppm	Results CL* Units ExLow 7.8 (6.5) - Mod. Alk 243 (-) umho/cm None 16 (-) ppm*** IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Results CL* Units ExLow VLow 7.8 (6.5) - Mod. Alkaline 243 (-) umho/cm None 16 (-) ppm**	Results CL* Units ExLow VLow Low 7.8 (6.5) - Mod. Alkaline - 243 (-) umho/cm None - 16 (-) ppm***	Results CL* Units ExLow VLow Low Mod	Results CL* Units ExLow VLow Low Mod High 7.8 (6.5) - Mod. Alkaline - CL* - CL* - CL* - CL* - CL* - CL* - - CL* -	Results CL* Units ExLow VLow Low Mod High VHigh

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533294
Customer Sample ID: 1632
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLov	v Low	Mod	High	VHigh	Excess.
Н	7.7	(6.5)	-	Mod. Alkaline					
Conductivity	157	(-)	umho/cm	None		С	L*		Fertilizer Recommended
Nitrate-N	17	(-)	ppm**		Щ				0.6 lbs N/1000sqft
Phosphorus	172	(50)	ppm		Щинин	•		III	0 lbs P2O5/1000sqft
Potassium	275	(175)	ppm		Щинин	#1111111111)IIII		0 lbs K20/1000sqft
Calcium	5,997	(180)	ppm						0 lbs Ca/1000sqft
/lagnesium	239	(50)	ppm		Щинин		11111		0 lbs Mg/1000sgft
Sulfur	21	(13)	ppm				11111		0 lbs S/1000sqft
Sodium	5	(-)	ppm	I					
ron									
Zinc									
Manganese									
Copper									
Boron									
imestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533295
Customer Sample ID: 1634
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow V	Low	Low	Mod	High	VHigh	Excess.
рН	7.7	(6.5)	-	Mod. Alkalin	e					
Conductivity	198	(-)	umho/cm	None			CI	*		Fertilizer Recommended
Nitrate-N	13	(-)	ppm**							0.8 lbs N/1000sqft
Phosphorus	181	(50)	ppm		1111111111			11111111111	Ш	0 lbs P2O5/1000sqft
Potassium	300	(175)	ppm		шфи	ШШ		111111		0 lbs K20/1000sqft
Calcium	6,986	(180)	ppm						II	0 lbs Ca/1000sqft
Magnesium	283	(50)	ppm		ШШШ			111111		0 lbs Mg/1000sgft
Sulfur	22	(13)	ppm		ШШШ			11111		0 lbs S/1000sqft
Sodium	7	(-)	ppm	1						
Iron										
Zinc										
Manganese							į			
Copper							i			
Boron							, ,			
Limestone Requirement										0.00 lbs/1000sqft
CL Critical lavel is the mainty										

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.

Travis County

Laboratory Number: 533296
Customer Sample ID: 1635
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLo	v Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkalii	e				
Conductivity	216	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	20	(-)	ppm**		ШШ				0.4 lbs N/1000sqft
Phosphorus	124	(50)	ppm		Щинин	,,,,,,,,,,,,,,	mmmi	I	0 lbs P2O5/1000sqft
Potassium	365	(175)	ppm		Щинин		1111111111		0 lbs K20/1000sqft
Calcium	8,950	(180)	ppm						0 lbs Ca/1000sqft
Magnesium	643	(50)	ppm		шини		mmi	ı	0 lbs Mg/1000sgft
Sulfur	18	(13)	ppm		111111111111111111111111111111111111111	111111111111111111111111111111111111111	III		0 lbs S/1000sqft
Sodium	14	(-)	ppm	II					
Iron									
Zinc									
Manganese									
Copper						i			
Boron									
Limestone Requirement									0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533297
Customer Sample ID: 1637
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN								
Analysis	Results	CL*	Units	ExLow VLow	Low	Mod	High	VHigh	Excess.
рН	7.5	(6.5)	-	Slightly Alkaline					
Conductivity	311	(-)	umho/cm	None		CL	*		Fertilizer Recommended
Nitrate-N	16	(-)	ppm**		l				0.6 lbs N/1000sqft
Phosphorus	91	(50)	ppm			######################################	mmi	l	0 lbs P2O5/1000sqft
Potassium	173	(175)	ppm						0 lbs K20/1000sqft
Calcium	10,460	(180)	ppm					ll .	0 lbs Ca/1000sqft
Magnesium	364	(50)	ppm			######################################	111111111		0 lbs Mg/1000sgft
Sulfur	23	(13)	ppm			11111111111	IIIII		0 lbs S/1000sqft
Sodium	9	(-)	ppm	1					
Iron						¦			
Zinc						-			
Manganese									
Copper						i			
Boron						¦			
Limestone Requirement									0.00 lbs/1000sqft
•	·		•	·					

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Nitrogen: Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Travis County

Laboratory Number: 533298
Customer Sample ID: 1638
Crop Grown: GARDEN

Soil Analysis Report

Soil, Water and Forage Testing Laboratory Department of Soil and Crop Sciences 2478 TAMU

College Station, TX 77843-2478 979-845-4816 (phone) 979-845-5958 (FAX)

Visit our website: http://soiltesting.tamu.edu

Sample received on: 4/25/2019
Printed on: 5/7/2019
Area Represented: not provided

Crop Grown: G	ARDEN									
Analysis	Results	CL*	Units	ExLow	VLow	Low	Mod	High	VHigh	Excess.
рН	6.9	(6.5)	-	Slightly A	Acid					
Conductivity	985	(-)	umho/cm	Moderate			CL			Fertilizer Recommended
Nitrate-N	181	(-)	ppm**	1111111111111						0 lbs N/1000sqft
Phosphorus	255	(50)	ppm				11111111111	mmi	Ш	0 lbs P2O5/1000sqft
Potassium	647	(175)	ppm		HIIIIIIII		1000000	mmi	ı	0 lbs K20/1000sqft
Calcium	3,514	(180)	ppm	1111111111111						0 lbs Ca/1000sqft
Magnesium	404	(50)	ppm				111111111111111111111111111111111111111	mmi		0 lbs Mg/1000sgft
Sulfur	14	(13)	ppm	1111111111111			11111111111	ı		0 lbs S/1000sqft
Sodium	118	(-)	ppm		1111111111	I				
Iron										
Zinc							1			
Manganese							į			
Copper							i			
Boron							!			
Limestone Requirement										0.00 lbs/1000sqft

*CL=Critical level is the point which no additional nutrient (excluding nitrate-N, sodium and conductivity) is recommended. **ppm=mg/kg

Conductivity: Salinity levels are becoming elevated, monitor levels or remove salts with 10-15 inches of clean leach water. **Nitrogen:** Apply an additional 1 lb N/1000 sqft every 4-6 weeks, as needed, to maintain vegetative growth.

Phosphorus: Phosphorus is highly elevated, avoid phosphorus containing fertilizers and organics for the next 5 years, retest annually.