Rain Garden Design

What have we learned so far

Tom Franke

City of Austin Watershed Protection Department Stormwater Treatment Section

February 2018

On the Agenda

- 1. What is a rain garden and why build one?
- 2. Design of Rain Gardens
 - a. Siting & Sizing
 - b. Location/Drainage Area
 - c. Infiltration Rates
 - d. Inlets
 - e. Media
- 3. Maintenance of rain gardens
- 4. Completed Projects

What is a Rain Garden?

A rain garden is a vegetated, depressed landscape area designed to capture and infiltrate and/or filter stormwater runoff from impervious surfaces.

Rain Garden Guidance

vhat is a

what is a rain garden? A rain garden is a shallow: vegented depression designed to abord and filter runoff from hard (impervious) surfaces like roofs, sidewalks, and driveways. Rain gardens are usually planted with colordin latitue plants and grasss. They not only provide an attractive addition to the yard, but calo help to conserve water and protect our water quality.

how does a rain garden help?

As Austin becomes increasingly urbanized, native landscapes are replaced with impervious surfaces. that prevent rainwater from soaking into the ground. Stormwater quickly runs off these hard surfaces, picking up pollutants from the land and carrying them to our creeks. This rapidly flowing water also increases the chances of flooding and erosion. The goal of a rain garden is to keep water on the land. Rain gardens, with their shallow depresslons, capture stormwater and prov de for natural inflitration into the soll. This provides water for the plants and helps maintain a constant flow of water in our streams through groundwater. They also he p filter out pollutants includ-ing fertilizers, posticides, oil, heavy metals and other chemicals that would otherwise reach our creeks through storm drains or drainage ditches. By reducing the quantity of water that runs off your propcrity, rain gardens help ower the risk of flooding and erosion.

growgreen.org

Rain Gardens

Keeping Water on the Land

Create A Rain Garden in Six Steps

flat land

T Find the Right Location • Observe die flow of water from nooftops, driveways. or other hard surfaces and place die rain garden where this water collects

earth-wise quide to

sun Shady locations will sell work, ber root of the shade the options for flowering plants are more limited in the shade • Make sure that any overflow will not cause unitended runoff to a neighbor's property or other structure • Maringe-related problems are occurring (e.g. foundation problems, eroside on flowding), consider plating the rain garden at lease 10° away from the structure

Avoid areas with utility lines. Be sure to call 1-800-DIG-TESS (344-8377) to Identify the location of underground utilities - the service is free

· Select an area on gently sloping or

· Calculate the slope of your lawn

(instructions on next page). The slope should be less than 10%

· If possible, pick a spot in full to partial

Why Build a Rain Garden?

- Protect Watershed
- Conserve Water
- Clean water
- Minor peak runoff reduction
- Conserve Energy
- Wildlife Friendly
- Aesthetics

- Captures and fully infiltrates runoff
- The infiltration capacity of the site soils are used to reduce stormwater runoff volume and associated pollutants
- No underdrain

- Captures and conveys runoff through:
 - biofiltration bed
 - underdrain system
 - No infiltration into underlying soil.

Partial Infiltration

- Captures and treats runoff through a biofiltration bed, a special soil mix
- Stormwater exits this rain garden in 2 ways:
 > via a raised outlet pipe
 > by infiltration into the underlying soil

Rain Garden Design Considerations

Siting

COA Water Quality Requirements:

Ponding Depth – One foot maximum

Land Use -

- Commercial, Multi-Family, Civic, and Right of Way developments.
- Single Family water quality credit allowed under certain circumstances.
 - Minimum 4+ lots treated by a rain garden
 - Located in dedicated common area or drainage easement
 - Accessible by standard maintenance equipment from the ROW

Stormwater Hotspots

Infiltration rain gardens are not allowed in areas where activities generate highly contaminated runoff due to the potential for ground water contamination.

Hot spots include, but are not limited to:

- commercial nurseries,
- auto salvage facilities,
- hazardous materials generators (where containers are exposed to rainfall),
- vehicle fueling and maintenance areas, and
- vehicle and equipment washing,
- dry or steam cleaning facilities,
- food production/distribution loading dock, and
- trash compactor areas

Location

Drainage Area

Contributing area not to exceed 2.0 acres.

Setbacks

Prevent adverse impacts to building foundations, basements, wellheads, and roadways.

Slopes

Should not be located on slopes exceeding 15 percent.

Soil Conditions

Consider depth to water table, bedrock, and the soil infiltration rate.

- Infiltration rain gardens are not allowed in locations where the depth from the bottom of the growing medium to:
 - the highest known groundwater table is less than 12 inches.
 - bedrock is less than 12 inches.
- Infiltration rate of the soil subgrade below the growing medium of the rain garden must be determined using insitu testing.

Infiltration Rate of Soil

(For infiltration only rain gardens)

- Don't rely of soil survey maps or desktop evaluation for soil infiltration rates
- Perform onsite infiltration test (percolation test)
- At least one test for every 2000 square feet of rain garden
- Dig test hole deep enough to measure infiltration at the bottom of the rain garden.
- Apply factor of safety
 (COA recommends using FS = 2)

Infiltration Test

Infiltration vs. Ponding Depth

The underlying native soil must have a design infiltration rate that will draw down the full ponded depth in 48 to 72 hours.

Drawdown Time - How fast should the rain garden empty after it rains?

The City of Austin recommends a drawdown time goal of no more than 2-3 days.

Why 3 days?

- Odors
- Mosquitos (typically take 4 to 5 days to hatch)
- Could affect health of plantings

Drainage Area

Design inlet for certainty of capture

• Grading features or trench drains

Certainty of Capture

Inlet Design

Inlet Design: Items to Consider

Flow Control

 Flows into the rain garden should not exceed 2 feet per second. Higher velocities can cause scouring and erosion.

Scouring

Inlet Design

Watch the Elevations during Construction

- Top of the area inlet sets the ponding depth.
- Location of curb cut and overflow weir

Inlet Design

Don't block flow path into RG

Often the addition of topsoil, sod, rock splash pad, etc. is not considered during design or construction and WQV is reduced or flows are hindered

Splash Pad Design

Watch the length and width.

Length

less than 6 inches from inside edge of inlet.

Splash Pad Design

Width

• extend 6 to 12 inches beyond the width of the inlet opening.

Splash Pad Issues

Longer splash pads cause sediment and debris to drop out at the inlet entrance. Over time the inlet becomes blocked and prevents stormwater from entering the rain garden.

Splash Pad Issues

 Drop from edge of inlet opening onto splash pad should be at least 4 inches.

Drop onto Splash Pad

Medium

Biofiltration Medium

- Blend: 70% concrete sand and 30% chocolate loam
- Organic Matter
 - Aged mulch (partially decomposed) may be added (up to 5% by weight)
 - Increased Water Holding Capacity
 - No added nutrients
 - No manure or bio-solids based compost

Biofiltration Medium Specification (COA Spec. 660S): https://library.municode.com/tx/austin/codes/standard_specifications_manual

Biofiltration Medium Suppliers:

http://www.austintexas.gov/department/stormwater-management

Underdrains

Underdrain design

- Allows plant roots to access underlying soil
- Washed river gravel works best

Saturated zone

- Promotes pollution removal
- Helps with plant viability

Infiltration Only Rain Gardens

During Construction:

Foot and equipment traffic on the bottom of the rain garden area will compact the soils and will affect the infiltration rate.

Scarification/Decompaction

Prior to installation of media/topsoil:

Scarify/decompact top four to six inches at the bottom of rain garden

- restores in-situ infiltration rate.
- promotes root penetration.
- minimizes nuisance ponding issues.

Scarification/Decompaction

Scarification/Decompaction

Sources: USFS, USDA, City of Austin, State of Minnesota

Maintenance

"Another flaw in the human character is that everybody wants to build and nobody wants to do maintenance."

- Kurt Vonnegut, Hocus Pocus

Maintenance Manual

GREEN STORMWATER INFRASTRUCTURE MAINTENANCE MANUAL

Completed 2014

Includes:

- Recommended maintenance schedule
- Checklist of items to inspect/maintain for a variety of stormwater control measures

www.austintexas.gov/sites/default/files/files/Watershed/stormwater/

RAIN GARDENS

IDEAL CONDITIONS

- No erosion or scouring of soil in garden
 No sediment or debris at inlet or within garden
 Uniform coverage with desired vegetation; no weeds
 Uniform mulch coverage
- No visible compaction, water drains within 48 hours

3

4

RAIN GARDENS

Sediment	
ISSUE	SOLUTION
Erosion or scouring present; Mulch or topsoil is worn away by water flow Fig. 2	Redistribute/replace mulch to consistent 3 inch depth; Cover extensive scouring with appropriately sized rock (typically 3 inch river rock) Fig. 3
Sediment deposits or debris at the inlet Fig. 4	Remove sediment, leaves, debris, and trash from the inlet Fig. 5
Sediment deposits greater than 3 inches deep in bottom of basin Fig. 6	If sediment deposits in discrete piles, remove with hand tools. If sediment uniformly covers bottom of basin and has reduced storage depth of garden over design depth, entire basin may need to be dredged to attain design conditions. If vegetation is disturbed, replace with in- kind vegetation. Refer to ECM (Section 1.6.7.C) for information on appropriate vegetation Fig. 7

RAIN GARDENS

Vegetative Coverage

ISSUE	SOLUTION
Dead vegetation	Remove and replace with viable plants
Vegetation obstructing the street, sidewalk, or curb inlet Fig. 8	Prune overhanging vegetation/ dead branches with hand tools to prevent obstruction Fig. 9
Inflow/outflow structure is blocked	Remove blockage to allow unimpeded inflow/outflow
Bare areas more than 10 sf	Replace dead vegetation and/ or ground cover/mulch to 3 inch uniform coverage Fig. 20
Abundant weeds and invasive plants; Refer to www.texasinvasives.org for a database of invasive plants Fig. 10	Remove weeds by hand tools or other approved IPM measures. Prevent the introduction of weeds by removing weeds before seed dispersal (before seed head forms) and properly maintaining desired vegetation. See note referring to the use of herbicides Fig. 11

6

Grover & Reese

Davis Lane & Leo

One Texas Center

infiltration only design

JJ Seabrook – Denver at Pershing

JJ Seabrook - Greenwood at Pershing

EM Franklin Rain Gardens

Barrington Elementary

Rainscape Retrofit at Barrington Elementary School

Questions ???

Tom Franke 512-974-1882

Tom.franke@austintexas.gov

Thank you for attending