Green Infrastructure Working Group: Beneficial Use of Stormwater

April 10, 2015
Agenda

Arrivals & Introductions 11:00
Staff presentation 11:15
 Recap of WPO Phase 2
 National models
Retain stormwater on-site
 • How much stormwater to retain?
 • Redevelopment & high impervious cover
 • On-site best practices
Small group discussion 12:15
Large group summary & recap 1:15

Note: There will be short breaks both before and after the small group discussion
Challenges & Opportunities:
Connecting the Dots...

1. Can incorporate natural systems & rainwater storage in designs to offset water use, preserve quality of life
2. Practical methods & models have already been implemented in other cities

BUT...

Heat
Drought
Population
Urbanization

Rainfall
Surface &
Groundwater
Natural Land Cover
Recap of WPO Phase 2 Work

• 9 public stakeholder meetings in 2014 to discuss topics related to green stormwater infrastructure
 – How to optimize use of stormwater runoff volume (e.g., conservation & infiltration)
 – Reviewed best practices to incorporate into the Environmental Criteria Manual
 – Stakeholder conclusion: require beneficial retention and/or re-use on-site for new & re-development
 – Staff to expand research on national models
What Does Austin Do Now?

• **Water Quality Requirement**
 - Must capture and treat a portion of a site’s stormwater runoff (based on impervious cover)
 - Payment-in-lieu option in Urban Watersheds

• **Innovative Water Management**
 - 2010 amendment to the Landscape Ordinance
 - Must direct stormwater runoff to 50 percent of required landscape area
 - Option to protect undisturbed natural area instead

➤ Integration of two provisions not required
Two Overall National Models

1. Focus on infiltration and baseflow
 - Required to infiltrate amount equal to average annual recharge volume for an undeveloped site

2. Focus on keeping stormwater on-site
 - Keep stormwater runoff from leaving the site
 - Use a combination of infiltration, harvesting, reuse, evaporation, and/or evapotranspiration
 - Reduce the effective impervious cover

➢ Different approaches for redevelopment
1. Infiltration & Baseflow

- Pioneered by Massachusetts and Maryland
 - Also used by Connecticut, Vermont, New Jersey, Wisconsin
- Portion of water quality volume infiltrated on-site with structural or non-structural controls
- Based on Hydrologic Soil Group (HSG)
 - Multiply water quality volume by soil specific recharge factor for A, B, C, & D soils
 - Maryland: A = 0.38; B = 0.26; C = 0.13; D = 0.07
- Exceptions for pollution hotspots, karst, areas with shallow water table, redevelopment
2. Retain Stormwater On-Site

- Used by multiple jurisdictions across the country
 - New York, Washington D.C., West Virginia, Delaware, Tennessee, Kentucky, Minnesota, Montana, New Mexico, California
- Based on a certain size/frequency of storm event
- Same basic concept as requiring an effective impervious cover limit
 - How runoff from impervious cover is reduced to levels of runoff from an undeveloped site
- Exceptions for redevelopment, unique conditions
“the Cityscape as a Water Supply”

• LCRA: Current drought is the most severe in the history of the Highland Lakes (link)

• Austin Water Resource Planning Task Force
 – Cityscape can be designed and retrofitted to function as a water supply source (demand reduction)
 – Capture, store, & treat rainwater for beneficial use

• WPO Phase 2 Stakeholder support for same

• Given these challenges & goals, we need to focus on more than just infiltration & baseflow
 ➢ Retain stormwater on-site for beneficial use
Retain Stormwater On-Site: Questions to Answer

• How much stormwater to retain on-site?
• How to handle redevelopment and high levels of impervious cover?
• Are there best practices we would always want to see implemented on-site?
How much to retain?
National Benchmarking

- Percentile of rainfall events
 - Ranges from 80th percentile to 95th percentile (e.g., 90\% of rainfall events are less than one inch)
 - Equates to a required depth in inches (e.g., first inch of rainfall will be retained on site)
 - Retention volume is based on required depth, site area, and impervious cover
 - Some jurisdictions factor in runoff coefficients for different types of land covers on the site (e.g., impervious cover, disturbed pervious cover)
How much to retain?
National Benchmarking

• Other options for methodology
 – Percentage of average annual runoff volume
 (e.g., capture 80% of the annual runoff volume)
 – Match the runoff volume to undeveloped condition for a certain design storm
 (e.g., 1 year, 24 hour storm)
 – Set amount to retain on-site equivalent to the required water quality volume
How much to retain?
Data from Austin

- Austin percentiles for rainfall events (24-hour)
 - Austin’s water quality volume = “half-inch-plus”
 - Capture and treat first half inch of runoff plus an additional 1/10 inch of runoff for each 10 percent increase in impervious cover over 20 percent
 - Half-inch-plus captures about 94 percent of the average annual runoff volume

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Depth (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>0.75</td>
</tr>
<tr>
<td>90</td>
<td>1.00</td>
</tr>
<tr>
<td>95</td>
<td>1.50</td>
</tr>
</tbody>
</table>
How much to retain?
Data from Austin

- Water Quality Volume (Half-Inch-Plus)
- 95th Percentile Rainfall Event
- 90th Percentile Rainfall Event
- 85th Percentile Rainfall Event
How much to retain?

Data from Austin
Redevelopment and High Impervious Cover

- Can be challenging to retain stormwater on-site for highly impervious sites
- Other jurisdictions offer a wide variety of alternative standards
 - Reductions in required volume
 - Payment-in-lieu options
 - Complete exemption
Example: 80% Impervious Cover Site

Conventional Sand Filter
2.3% of Site Area
4 feet deep

Assumes half-inch-plus capture depth and criteria manual design standards
Example: 80% Impervious Cover Site

Rain gardens = 9.2% site area
Moderate infiltration rate

Rain gardens = 18.3% site area
Slower infiltration rate

Assumes half-inch-plus capture depth and criteria manual design standards
Example: 80% Impervious Cover Site

- Porous pavement on 60% of parking lot
- Rain gardens for remaining 40%
- Green roof and 7,500 gal. cistern
 - Extra cistern for long-term storage
- Rain garden for remaining 50% of roof

Assumes half-inch-plus capture depth and criteria manual design standards
Rain garden size by percent IC:

Moderate infiltration rate

Assumes half-inch-plus capture depth and criteria manual design standards
Rain garden size by percent IC:

Slower infiltration rate

Assumes half-inch-plus capture depth and criteria manual design standards
Washington, D.C.

- Requires 1.2 inches (90th percentile event) to be retained on-site for new development
- Reduces to 0.8 inches (80th percentile event) for “major substantial improvement activity”
- Where on-site retention proves infeasible, may reduce volume retained on-site by up to 50%
 - Achieve off-site through payment-in-lieu to D.C. or through purchase of credits from market
Tennessee

- Requires 1 inch to be retained on-site
- Incentive standards allow a site to reduce the 1 inch standard by 10%, up to a maximum of 50% (0.5 inches always retained)
 - Redevelopment projects
 - Brownfield redevelopment
 - High density (>7 units per acre)
 - Vertical density (Floor-to-Area Ratio of 2:1 or >18 units/acre)
 - Mixed use and transit oriented development

- W. Virginia: similar program (0.2” reduction each)
Required Best Practices?

• Regardless of the retention requirement, are there best practices we would always want to see implemented on-site?
 – Disconnected downspouts
 – Recessed landscape islands
 – Prevent compaction of pervious areas
 – Green stormwater controls
Disconnected Downspouts

- Must discharge to landscaping or rainwater cisterns
- Must design to avoid erosion and drainage problems
- Requirement included in Colony Park Design Guidelines
Recessed Landscape Islands

- Parking lot islands must be designed to accept and infiltrate stormwater
- Requirement in New Orleans Code
- Must design to avoid erosion, drainage, and tree protection problems
Prevent Compaction of Pervious Areas

• Improve construction sequencing for parking lots
• Fence off islands from construction vehicles or remove compacted fill before planting
Green Stormwater Controls

• Require portion of water quality volume to be treated using green stormwater controls
 – Part of Transit-Oriented Development (TOD) and Planned United Development (PUD) ordinances
• Require water quality ponds be designed for shallow depths (e.g., 1 foot or less)
• Departure from current practice with sedimentation-sand filter as default control
• Exceptions for special cases (e.g., topography)
CVS Example

<table>
<thead>
<tr>
<th>Category</th>
<th>CVS Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality Control</td>
<td>$20,658</td>
</tr>
<tr>
<td>Storm Drainage</td>
<td>$30,702</td>
</tr>
<tr>
<td>Landscaping</td>
<td>$11,463</td>
</tr>
<tr>
<td>Total</td>
<td>$62,823</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>CVS Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality Control</td>
<td>$45,190</td>
</tr>
<tr>
<td>Storm Drainage</td>
<td>$72,782</td>
</tr>
<tr>
<td>Landscaping</td>
<td>$2,959</td>
</tr>
<tr>
<td>Total</td>
<td>$120,931</td>
</tr>
</tbody>
</table>
Small Group Discussion

- How much stormwater to retain on-site?
- How to handle redevelopment and high levels of impervious cover?
- Are there best practices we would always want to see implemented on-site?
- Identify and discuss key considerations if more stormwater is integrated on site.
 - For example: maintenance, inspections, plant selection, retention time, existing trees, soils
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kickoff</td>
<td>Jan. 30</td>
</tr>
<tr>
<td>Land Cover & Natural Function</td>
<td>Feb. 20</td>
</tr>
<tr>
<td>Integrate Nature into the City</td>
<td>Mar. 13</td>
</tr>
<tr>
<td>Beneficial Use of Stormwater</td>
<td>Apr. 10</td>
</tr>
<tr>
<td>Stormwater Options for Redevelopment & Infill</td>
<td>May 15</td>
</tr>
<tr>
<td>Integration of Green Elements</td>
<td>June 5</td>
</tr>
<tr>
<td>Wrap-Up</td>
<td>June 26</td>
</tr>
</tbody>
</table>
Matt Hollon
Watershed Protection Department
City of Austin
(512) 974-2212
matt.hollon@austintexas.gov

Erin Wood
Watershed Protection Department
City of Austin
(512) 974-2809
erin.wood@austintexas.gov